
DDE Server
Software manual

rho 3

Edition 102

rho 3

Software manual

1070 072 161-102 (97.08) GB

 1997

by Robert Bosch GmbH, Erbach / Germany
All rights reserved, including applications for protective rights.

Reproduction or distribution by any means subject to our prior written
permission.

Discretionary charge 10,- DM

1070 072 161-102 (97.08) GB

Contents I

1 Safety Instructions... 1-1
1.1 Proper use ... 1-1
1.2 Qualified personnel.. 1-2
1.3 Safety markings on components ... 1-3
1.4 Safety instructions in this manual .. 1-4
1.5 Safety instructions for the described product... 1-5

2 Introduction.. 2-1
2.1 DDE and DDEML... 2-2
2.1.1 Setting up a Connection ... 2-2
2.1.2 Static Data Exchange... 2-3
2.1.3 Requesting Data Dynamically... 2-4
2.1.4 Terminating a Connection .. 2-4
2.1.5 Conventions Used in this Manual ... 2-5

3 Hardware and Software Requirements ... 3-1

4 Software Package Contents.. 4-1

5 Software Protection ... 5-1

6 DDE Server Operation .. 6-1

7 Setting Up a Connection ... 7-1
7.1 Connection between Client and Server ... 7-1
7.2 Connection between PC and Control Unit ... 7-2

8 Server Services ... 8-1
8.1 File Management Functions .. 8-1
8.2 Cyclical Services.. 8-1
8.3 Non-cyclical Services... 8-1
8.4 Services with ASCII Protocol ... 8-1
8.5 GStatus Special Function .. 8-2

9 ROPS3SVR.INI File .. 9-1

10 List of Functions .. 10-1
10.1 Status and Initialization Functions ... 10-1
10.1.1 Global Status .. 10-1
10.1.2 Control and Monitoring Option for ASCII Services ... 10-4

10.1.2.1 Control Server Service .. 10-4
10.1.2.2 Control Client Service.. 10-5

10.1.3 Server Error Function ... 10-6
10.1.4 Signalling Control Unit Errors / Warnings... 10-7
10.1.5 List of Control Errors / Warnings .. 10-8

10.1.5.1 Syntax of ERROR.TXT File... 10-8
10.1.6 List of Control Errors / Warnings in ASCII.. 10-10
10.1.7 Initializing an Interface.. 10-11
10.1.8 Closing an Interface.. 10-12
10.1.9 Automatic Initialization.. 10-12
10.1.10 Monitoring the Control Unit <-> Server Connection .. 10-13
10.2 File Transfer Functions.. 10-14
10.2.1 Download Command.. 10-14
10.2.2 ASCII Download Command ... 10-16
10.2.3 Upload Command .. 10-18
10.2.4 ASCII Upload Command .. 10-20
10.2.5 Directory Command ... 10-22
10.2.6 Rename Command .. 10-24
10.2.7 Delete Command ... 10-25

1070 072 161-102 (97.08) GB

II Contents

10.3 Online Functions.. 10-26
10.3.1 Kinematics Information... 10-26
10.3.2 Axis Positions ... 10-27

10.3.2.1 Client Requires Data Only Once ...10-27
10.3.2.2 Polling Axis Data ...10-27

10.3.3 Axis Data in ASCII .. 10-30
10.3.4 Tool... 10-31
10.3.5 SC System.. 10-32
10.3.6 Process Selection... 10-33
10.3.7 Process Stop .. 10-35
10.3.8 Process List .. 10-36
10.3.9 Process Status ... 10-37
10.3.10 Control Reset Command .. 10-39
10.3.11 Set RCA .. 10-41
10.3.12 Signal Status ... 10-42
10.4 Access to User Variables... 10-43
10.4.1 General Information.. 10-43

10.4.1.1 Prerequisites ...10-43
10.4.1.2 Permitted Variables ...10-43
10.4.1.3 Entering Names of Variables ..10-44
10.4.1.4 Security Query (Common ID) ..10-46

10.4.2 Reading Variables .. 10-46
10.4.3 Reading Variables via ASCII Protocol .. 10-50
10.4.4 Writing Variables .. 10-53
10.4.5 Writing Variables via ASCII Protocol .. 10-57
10.4.6 Example.. 10-60

11 Index.. 11-1

1070 072 161-102 (97.08) GB

Safety Instructions 1-1

1 Safety Instructions
Before you start working with the DDE Server, we recommend that you
thoroughly familiarize yourself with the contents of this manual. Keep this
manual in a place where it is always accessible to all users.

1.1 Proper use
This instruction manual presents a comprehensive set of instructions and
information required for the standard operation of the described products.

The products described hereunder
• were developed, manufactured, tested and documented in accordance

with the relevant safety standards. In standard operation, and provided
that the specifications and safety instructions relating to the project
phase, installation and correct operation of the product are followed,
there should arise no risk of danger to personnel or property.

• are certified to be in full compliance with the requirements of the
• COUNCIL DIRECTIVE 89/336/EEC of May 3rd 1989 on the ap-

proximation of the laws of the Member States relating to electro-
magnetic compatibility, 93/68/EEC (amendments of Directives),
and 93/44/EEC (relating to machinery)

• COUNCIL DIRECTIVE 73/23/EEC (electrical equipment designed
for use within certain voltage limits)

• Harmonized standards EN 50081–2 and EN 50082–2
• are designed for operation in an industrial environment (Class A emis-

sions). The following restrictions apply:
• No direct connection to the public low–voltage power supply is

permitted.
• Connection to the medium and/or high–voltage system must be

provided via transformer.
The following applies for application within a personal residence, in
business areas, on retail premises or in a small–industry setting:
• Installation in a control cabinet or housing with high shield attenua-

tion.
• Cables that exit the screened area must be provided with filtering or

screening measures.
• The user will be required to obtain a single operating license issued

by the appropriate national authority or approval body. In Germany,
this is the Federal Institute for Posts and Telecommunications,
and/or its local branch offices.

⇒ This is a Class A device. In a residential area, this device may cause
radio interference. In such case, the user may be required to intro-
duce suitable countermeasures, and to bear the cost of the same.

Proper transport, handling and storage, placement and installation of the
product are indispensable prerequisites for its subsequent flawless serv-
ice and safe operation.

1070 072 161-102 (97.08) GB

1-2 Safety Instructions

1.2 Qualified personnel
This instruction manual is designed for specially trained personnel. The
relevant requirements are based on the job specifications as outlined by
the ZVEI and VDMA professional associations in Germany. Please refer
to the following German–Language publication:
Weiterbildung in der Automatisierungstechnik
Publishers: ZVEI and VDMA Maschinenbau Verlag
Postfach 71 08 64
60498 Frankfurt/Germany

Interventions in the hardware and software of our products not described
in this instruction manual may only be performed by our skilled personnel.

Unqualified interventions in the hardware or software or non–compliance
with the warnings listed in this instruction manual or indicated on the
product may result in serious personal injury or damage to property.

Installation and maintenance of the products described hereunder is the
exclusive domain of trained electricians as per IEV 826–09–01 (modified)
who are familiar with the contents of this manual.

Trained electricians are persons of whom the following is true:
• They are capable, due to their professional training, skills and exper-

tise, and based upon their knowledge of and familiarity with applicable
technical standards, of assessing the work to be carried out, and of
recognizing possible dangers.

• They possess, subsequent to several years’ experience in a compara-
ble field of endeavour, a level of knowledge and skills that may be
deemed commensurate with that attainable in the course of a formal
professional education.

With regard to the foregoing, please read the information about our com-
prehensive training program. The professional staff at our training centre
will be pleased to provide detailed information. You may contact the cen-
tre by telephone at (+49) 6062 78–258.

1070 072 161-102 (97.08) GB

Safety Instructions 1-3

1.3 Safety markings on components

DANGER! High voltage!

DANGER! Corrosive battery acid!

CAUTION! Electrostatically sensitive components!

Disconnect mains power before opening!

Lug for connecting PE conductor only!

Functional earthing or low–noise earth only!

Screened conductor only!

1070 072 161-102 (97.08) GB

1-4 Safety Instructions

1.4 Safety instructions in this manual

DANGEROUS ELECTRICAL VOLTAGE
This symbol warns of the presence of a dangerous electrical voltage.
Insufficient of lacking compliance with this warning can result in per-
sonal injury.

DANGER
This symbol is used wherever insufficient or lacking observance of this
instruction can result in personal injury.

CAUTION
This symbol is used wherever insufficient or lacking observance of in-
structions can result in damage to equipment or data files.

⇒ This symbol is used to alert the user to an item of special interest.

1070 072 161-102 (97.08) GB

Safety Instructions 1-5

1.5 Safety instructions for the described product

DANGER
Fatal injury hazard through ineffective Emergency–OFF devices!
Emergency–OFF safety devices must remain effective and acces-
sible during all operating modes of the system. The release of
functional locks imposed by Emergency–OFF devices must never
be allowed to cause an uncontrolled system restart! Before restor-
ing power to the system, test the Emergency–OFF sequence!

DANGER
Danger to persons and equipment!
Test every new program before operating the system!

DANGER
Retrofits or modifications may interfere with the safety of the prod-
ucts described hereunder!

The consequences may be severe personal injury or damage to
equipment or the environment. Therefore, any system retrofitting
or modification utilizing equipment components from other manu-
facturers will require express approval by Bosch.

DANGEROUS ELECTRICAL VOLTAGE
Unless described otherwise, maintenance procedures must always
be carried out only while the system is isolated from the power
supply. During this process, the system must be blocked to pre-
vent an unauthorized or inadvertent restart.

If measuring or testing procedures must be carried out on the ac-
tive system, these must be carried out by trained electricians.

CAUTION
Danger to the module!
Do not insert or remove the module while the controller is switched
ON! This may destroy the module. Prior to inserting or removing
the module, switch OFF or remove the power supply module of the
controller, external power supply and signal voltage!

CAUTION
Only Bosch–approved spare parts may be used!

1070 072 161-102 (97.08) GB

1-6 Safety Instructions

CAUTION
Danger to the module!
All ESD protection measures must be observed when using the
module! Prevent electrostatic discharges!

Observe the following protective measures for electrostatically endan-
gered modules (EEM)!
• The Employees responsible for storage, transport and handling must

be trained in ESD protection.
• EEMs must be stored and transported in the protective packaging

specified.
• Out of principle, EEMs may be handled only at special ESD work sta-

tions equipped for this particular purpose.
• Employees, work surfaces and all devices and tools that could come

into contact with EEMs must be on the same potential (e.g. earthed).
• An approved earthing wrist strap must be worn. It must be connected

to the work surface via a cable with integrated 1 MW resistor.
• EEMs may under no circumstances come into contact with objects

susceptible to accumulating an electrostatic charge. Most items made
of plastic belong to this category.

• When installing EEMs in or removing them from an electronic device,
the power supply of the device must be switched OFF.

1.6 Trademarks

All trademarks referring to software that is installed on Bosch products
when shipped from the factory represent the property of their respective
owners.

At the time of shipment from the factory, all installed software is protected
by copyright. Software may therefore be duplicated only with the prior
permission of the respective manufacturer or copyright owner.

MS–DOSr and Windows™ are registered trademarks of Microsoft Corpo-
ration.

PROFIBUS is a registered trademark of the PROFIBUS Nutzerorgani-
sation e.V. (user organization).

1070 072 161-102 (97.08) GB

Introduction 2-1

2 Introduction
Beginning with version W3B, the ROPS3 software package provides a va-
riety of functions for communicating with the rho 3.0 Robot Control.
The complement of features encompasses file transfer functions, proces-
sing and status functions, the latter of which are also referred to as online
functions. These services are integrated in a program package that is
provided with a comfortable graphical user interface (GUI) for operation
with the Microsoft® Windows® operating system. The ROPS3 software
package also contains several DOS tools which shall not be specifically
discussed. The extent of these communications options is limited to file
transfer functions.
In order to enable the user to integrate the online functions into his own
GUI, or to "remote-control" the rho 3.0 control by means of Windows
commands, as opposed to direct manual operation, a function library in
conjunction with a standardized interface is required. For this reason, the
DDE inter-process communications interface for Windows is provided. It
is supported by all Windows operating system variants, such as Microsoft
Windows 3.1 and Windows for Workgroups 3.11, as well as stand-alone
operating systems, such as Windows 95 and Windows NT.
The descriptions in this manual apply to software version 3.0 of the On-
line DDE Server.

Overview of DDE Server

1070 072 161-102 (97.08) GB

Introduction2-2

2.1 DDE and DDEML
The Dynamic Data Exchange (DDE) comprises a means of inter-process
communications within the Windows environment. It uses the principle of
shared memory to effect the data exchange between two Windows appli-
cations. For this purpose, one application must act as the client (i.e., the
GUI, or Windows desktop), while the other acts as the server (i.e., the
ROPS3 DDE server).

In this context, an application is designated as a server if it offers services
to other applications. (Throughout the following descriptions, these servi-
ces will also be referred to as items.) The application utilizing the services
or items provided by a server is deemed to be the client.

To enable the required communications, the On-line DDE Server provides
several services that can be utilized by the client. The referred services
facilitate the setting up of connections, performing data exchange, moni-
toring, execute and other functions. In the case of data exchange, a diffe-
rentiation can be made between a one-time data transfer (i.e., process
start) and a dynamic data exchange providing a continuous update (i.e.,
axis display). All functions governing the process communications bet-
ween client and server are located in the DDEML, or Dynamic Data Ex-
change Management Library. It can safely be said that the functions
stored in the DDEML are an indispensable prerequisite for all interactions
between client and server

A DDE Server can support several data exchange formats. The default
format is the CF_TEXT clipboard format which, at the same time, consti-
tutes the minimum requirement.

The following discussion explains the operational principles governing the
interactions between client and server. All message exchange or com-
mand transfer functions, as well as the message types themselves that
effectively make up the commands (e.g. XTYP_CONNECT), are defined
in the DDEML.

2.1.1 Setting up a Connection
Before a client can request data from a server, it must establish a con-
nection with the same.

CLIENT
XTYP_CONNECT ==>

<== DDE_FACK
SERVER

Connection Setup

The client sends the XTYP_CONNECT message to the server (via
DDEML). The server initializes the connection and confirms the fault-free
completion of the functional connection by returning the DDE_FACK si-
gnal.

1070 072 161-102 (97.08) GB

Introduction 2-3

2.1.2 Static Data Exchange
The one-time data exchange between client and server is also known as
a cold link.

There are two options for exchanging static data:

Option 1

The client transmits data to the server (e.g. interface parameters).

CLIENT
XTYP_POKE ‘item’ ==>

<== DDE_FACK
SERVER

Static Data Exchange — Option 1

The client transmits, via the DDEML, the XTYP_POKE message, along
with an identifier (the item) and the corresponding data, to the server. The
item identifies the data type to the server. The server then sends the
DDE_FACK message to acknowledge that it has received the data.

Option 2

The client requests from the server specific data on a one-time basis (e.g.
kinematics information).

CLIENT
XTYP_REQUEST ‘item’ ==>

<== Data relating to ‘item’
SERVER

Static Data Exchange — Option 2

The client transmits, via the DDEML, the XTYP_REQUEST message,
along with an identifier (the item), to the server. The item that is included
in the transmission informs the server which data it is requested to send
to the client.

1070 072 161-102 (97.08) GB

Introduction2-4

2.1.3 Requesting Data Dynamically
For data that is subject to constant change, the client is able to establish a
dynamic connection that is known as a hot link. The server will subse-
quently send its data in cyclical intervals. This process will continue until
the client cancels the dynamic connection. To prevent unnecessary sy-
stem loads, certain data is transmitted only if a change in data contents
has occurred. An example of this transmission mode is the request for
axis positions in ASCII code.

CLIENT

XTYP_ADVSTART ‘item’ ==>

<== XTYP_ADVDATA ‘item’
DDE_FACK ==>

<== XTYP_ADVDATA ‘item’
DDE_FACK ==>

<== XTYP_ADVDATA ‘item’
DDE_FACK ==>

.

.

.

.

XTYP_ADVSTOP ‘item’ ==>

SERVER

Dynamic Data Exchange

The client transmits, via the DDEML, the XTYP_ADVSTART message,
along with an identifier (the item), to the server. The item that is included
in the transmission informs the server which dynamic data it is requested
to send to the client. The data is then transmitted to the client along with
the XTYP_ADVDATA message. The client is then required to acknowled-
ge the receipt by sending the DDE_FACK message. The
XTYP_ADVSTOP message is used to terminate the dynamic data ex-
change.

2.1.4 Terminating a Connection
If a client no longer requires data from a server, it must again terminate
the connection. Only in this manner will the interface initially occupied by a
CONNECT command again be released.

CLIENT XTYP_DISCONNECT ==> SERVER

The client transmits, via the DDEML, the XTYP_DISCONNECT message
to the server. The server terminates the connection and releases the in-
terface.

1070 072 161-102 (97.08) GB

Introduction 2-5

2.1.5 Conventions Used in this Manual
To simplify the visual interpretation of the bi-directional data exchange
between client and server, the interactions and their attendant commands
and/or messages are arranged in the form of tables.

Example of a DDE table:

Client Message "Item" Data <=> Server
Start cyclical status

query
XTYP_ADVSTART "StFehler" --- =>

TRUE --- <= Acknowledge
command

continue until XTYP_ADVDATA "StFehler" StFehler <= Transmit data
cyclically

Stop DDE_FACK "StFehler" --- =>
Stop status XTYP_ADVSTOP "StFehler" --- =>

Description of Client / Server Data Exchange

Description of table:

Column 1 (Client): Brief explanation of the DDE command from the
client's viewpoint.

Column 2 (Command): DDE commands and possible "items."

Column 3 (Data): The names of structures which are used to faci-
litate the data exchange. An explanation of
structures appears subsequent to the respective
table.

(The associated "structs" and/or "defines" are
located in the file named Client.h which is pro-
vided as part of the software complement. The
enclosing quotation marks, "---", indicate no
data is exchanged by means of the associated
message.

Column 4 (<=>): Depicts the direction of data transfer:

=> Indicates client-to-server transfer.

<= Indicates server-to-client transfer.

Column 5 (Server): Brief explanation of the DDE command from the
server's viewpoint.

1070 072 161-102 (97.08) GB

Introduction2-6

1070 072 161-102 (97.08) GB

Hardware and Software Requirements 3-1

3 Hardware and Software Requirements
The minimum requirements are listed below:

• BOSCH PG5 programming device or similar
IBM AT-compatible PC.

• 386SX33 Mhz processor or better

• 2 MByte RAM (4 MByte recommended)

• Hard disk

• 1 serial interface (16-byte FIFO recommended)

• Microsoft Windows v. 3.1, Windows 95 or Windows NT (version 3.5
or higher)

With a view to developing a client application, the user should possess
solid skills with regard to programming Windows applications and the
DDE interface. The creation of a client application will be greatly facilitated
by the availability of suitable tools (i.e., InTouch, Visual Basic, Visual C,
etc.). The compiler must be set to ALIGNMENT2. The timeout parameter
required by several DDE functions must be set to 5 seconds.

Though the following bibliography listing is by no means exhaustive, the
following reference works will, provide useful assistance with Windows
and DDE programming:

For Microsoft Windows 3.1 / Windows for Workgroups 3.11:

Charles Petzold, Programming Windows Third Edition. Microsoft Press.
ISBN number 1-55615-395-3.

For Windows 95:

Charles Petzold, Programming for Windows 95. Microsoft Press. ISBN
number 1-55615-676-6.

It is instructive to note that the DDE Server supports in its services only
filenames that are up to 8 characters in length.

1070 072 161-102 (97.08) GB

Hardware and Software Requirements3-2

1070 072 161-102 (97.08) GB

Software Package Contents 4-1

4 Software Package Contents
The software for the DDE Server is provided on 2 diskettes.

Diskette 1 contains:

ERROR.H Possible server error messages

ERROR.TXT User-specific error messages (English).

FEHLER.TXT User-specific error messages (German).

ROPS3SVR.INI Initialization datafile.

ROPS3SVR.EXE. Executable server file.

CLIENT.H Include file containing all data structures and Defi-
nes utilized by the server.

README.WRI MS-WRITE document containing general informa-
tion and description of licensing procedure.

FAX.WRI MS-WRITE document; blank order form.

CRYPSERV.EXE

CKLDRV.SYS

CKCONFIG.EXE and

SETUP_CK.EXE Files required by Windows NT

Diskette 2 contains:

SERVER_V.DOC Microsoft Word 6.0 document; detailed description
of the server.

Sample programs for access to BAPS variables:

DDE_AC2.MDB Microsoft Access 2.0 sample file

DDE_EX5.XLS Microsoft Excel 5.0 sample file

DDE_WW6.DOC, and

DDE_WW6.DOT Microsoft WORD 6.0 files

DDEDEMO.QLL,

DDEDEMO.IRD,

DDEDEMO.PKT, and

DDEDEMO.SYM BAPS programs for accessing BAPS variables.

The Online DDE Server is available in a German-language and English-
language version. The desired language is determined by an entry in the
file named ROPS3SVR.INI.

1070 072 161-102 (97.08) GB

Software Package Contents4-2

1070 072 161-102 (97.08) GB

Software Protection 5-1

5 Software Protection
The DDE Server is protected by a software dongle. Subsequent to its in-
stallation, the Server must be enabled by entering a software key number
(specified by Bosch). The procedure required for license application and
actual licensing is described in the README.WRI file. An application form
for the software key is provided in the FAX.WRI file.

1070 072 161-102 (97.08) GB

Software Protection5-2

1070 072 161-102 (97.08) GB

DDE Server Operation 6-1

6 DDE Server Operation
The Online DDE Server comprises a stand-alone Windows
application. The Server does not feature an active user in-
terface but is represented by an icon while running in the
background.

The Server menu is opened by double-clicking the Server icon. The menu
contains all Server configuration and monitoring functions.

The menu provides the following functions:

rho This command displays the various versions of the control unit.
This command is used for communications testing. Any errors that may
occur will be displayed in the monitor. Prior to selecting the rho command
for the first time, the interface parameters must be set up (see Setup).

1070 072 161-102 (97.08) GB

DDE Server Operation6-2

Monitor This command is used to visualize the internal Server statuses.
It displays a variety of information for each channel (see explanation).

Channel 2 is connected to Com2
Warnings in the rho 3.0
No errors in the rho 3.0

Last error (see also GStatus)
DOS Error number

Error text message, (unknown extension not QLL, PKT, etc.)

Last function:
Client / Server

Server rho 3.0

List of all active DDE functions of this channel

Description of Client / Server Data Communications

Setup This command is used for setting the communications and
refresh rate parameters. The interface data entered here possess
relevance only for the rho control version selected by means of the rho
menu command. The interface parameters for server operation are set by
means of the InitUART service (see below).

The refresh rate (expressed in ms) comprises the timing rate for all cycli-
cal services provided by the server. This value is hardware-dependent. A
fast refresh rate will translate into high system loads. The standard value
is 500 ms (386-generation processor running at 66 MHz).

The data generated under the Setup menu command are saved in the
.INI file.

Lizensierung (Licensing) Licensing will be required subsequent to the
successful installation of the server. As a consequence of the completed
licensing procedure, the applicant becomes a Registered User who is
deemed to have obtained the Online DDE Server by lawful means, autho-
rizing him to work with the software. A detailed description of the installa-
tion and licensing procedures is provided in the README.WRI file.

Über (About ...) This command displays the software version of the server
being used.

1070 072 161-102 (97.08) GB

Setting Up a Connection 7-1

7 Setting Up a Connection

7.1 Connection between Client and Server
The Online DDE Server supports four serial interfaces (COM1- COM4). A
connection between client and server is established by means of a DDE
Connect. The parameters for the referred DDE Connect are comprised
by the ROPS3_SERVER server name and the respective Topic name. As
each interface is assigned one Topic, i.e., Channel1 through Channel4,
the server is able to maintain connections with four clients simultaneously.
A client requiring connections to several controls must therefore execute
several Connects.

R O P S 3 - D D E - S e r v e rC l i e n t 1

r h o 3
C h a n n n e l 1

r h o 3
C h a n n n e l 2

r h o 3
C h a n n n e l 3

r h o 3
C h a n n n e l 4

C o n n e c t i o n 1

C o n n e c t i o n 2

C o n n e c t i o n 1

C o n n e c t i o n 1

C L i e n t 2

C l i e n t 3

 DDE Server Channel Structure

Subsequent to DDE Connect, only 4 services per channel are available:
GStatus global status
InitUART interface initialization
Formats List of formats (CF_TEXT only)
TopicItemList List of all items currently available

Subsequent to InitUART (see Section 6.2, "Connection between PC and
Control Unit"), all services are enabled for the selected channel:

Del Deletes a file on the rho 3.0 Robot Control
Dir Display rho 3.0 directory
UpLoad Copies file/files from the rho 3.0 to the PC
DownLoad Copies file/files from the PC to the rho3.0
Ren Renames a file on the rho 3.0
ADVKinAchsen Axis information, kinematics, cyclical
ADVGlobAchsen Axis information, all axes, cyclical
Werkzeug Tool, cyclical
RK_SYS Space coordinate (SC) system, cyclical
ProzListe List of all processes, cyclical
ProzStatus Status of a single process, cyclical
Signale Signal display, cyclical
FehlerFlag rho3 error has occurred
Fehler_A rho3 error / warnings
Control_Client Client / Server control functions

1070 072 161-102 (97.08) GB

Setting Up a Connection7-2

Control_Server Server / Client control functions
ServerFehler Server fault / error
A1_POS
A20_POS Axis positions
A1_ENDPOS
A20_ENDPOS End positions of axes
A1_INPOS
A20_INPOS IN-position signals from axes
B1_POS
B8_POS Tape positions
TopicItemList List of all items currently available
CloseUART Closes the interface
GRDStellung Home position, Robot Control
KinInfo Kinematiks information, rho 3.0
KinAchsen Axis information, kinematics
GlobAchsen Axis information, all axes
Fehler rho 3.0 error
ProzAnw Selects a process
ProzStopp Stops a process
SetRCA Sets RCA signals 10.1 through 10.8
GStatus Global status
VarRead1
VarRead32 Reading user variables
VarWrite1
Varwrite32 Writing user variables
VarRead1_A
VarRead32_A Reading user variables (ASCII protocol)
VarWrite1_A
VarWrite32_A Writing user variables (ASCII protocol)
Heartbeat Control unit / PC connection monitoring

7.2 Connection between PC and Control Unit
In order to effect the exchange of data between control unit and server,
initialization of the interface connecting the PC with the control unit is re-
quired. This can be accomplished in two ways:

• By invoking the InitUART server service, along with the associated
parameters, OR

• in ROPS3SVR.INI file, by setting AUTOINIT=1 (see also Section 8,
"ROPS3SVR.INI" and Section 9.1.9, "Automatic Initialization"). This
initialization methods utilizes the parameters from the .INI file.

All server services will be available only subsequent to proper initializati-
on.

Recommendation: Inadvertent interruptions of the connection between
control unit and PC, e.g. through removal of the plug connection or
through RC start-up during the data exchange, will disrupt the entire data
exchange with the server. To facilitate the restoration of communications
on the part of the server subsequent to correcting the malfunction, the
HeartBeat monitoring function should always remain active (see Section
9.1.10).

1070 072 161-102 (97.08) GB

Server Services 8-1

8 Server Services
The server services are divided into four categories. These are discussed
in the following sections.

8.1 File Management Functions
Del, Dir, UpLoad, DownLoad, Upload_A, Download_A, Ren

Only one of these 7 Items can be active (on each channel). As one func-
tion is initialized, the other four are deleted from the TopicItemList. Once
the function has been completed, all Items are again added to the list.

In the event that cyclical services are found to be active, they will be hal-
ted for the time interval required by the file transfer function.

8.2 Cyclical Services
ADVKinAchsen, ADVGlobAchsen, Werkzeug, RK_SYS,
ProzListe, ProzStatus, Signale, FehlerFlag, Fehler_A,
Control_Client, Control_Server, ServerFehler,
A1_POS -A20_POS, A1_ENDPOS - A20_ENDPOS,
A1_INPOS - A20_INPOS, and B1_POS - B8_POS,
VarRead1 - VarRead32, VarWrite1 - VarWrite32,
VarRead1_A - VarRead32_A, VarWrite1_A - VarWrite32_A,
and Heartbeat

The Server maintains an instruction list for each Channel. At the time of
initialization, the cyclical services are inserted into this queue, and started
by means of a timer. Each tick of the timer causes one instruction from
the queue to be processed. The active functions alternate (round robin
sequence). The referred timer can be set by means of the Setup menu
command, using the Taktrate option (see also Section 5, "DDE Server
Operation").

8.3 Non-cyclical Services
TopicItemList, CloseUART, GRDStellung, KinInfo,
KinAchsen, GlobAchsen, Fehler, ProzAnw, ProzStopp,
SetRCA, FehlerFlag, Fehler_A, Control_Client,
Control_Server, ServerFehler, A1_POS - A20_POS,
A1_ENDPOS - A20_ENDPOS, A1_INPOS - A20_INPOS,
and B1_POS - B8_POS, VarRead1 - VarRead32,
VarWrite1 - VarWrite32, VarRead1_A - VarRead32_A, and
VarWrite1_A - VarWrite32_A

The above named functions can be invoked anytime while the server is
ready to process a function, i.e., also in parallel to cyclical services.

8.4 Services with ASCII Protocol
Upload_A, Download_A, FehlerFlag, Fehler_A,
Control_Client, Control_Server, ServerFehler,
A1_POS - A20_POS, A1_ENDPOS - A20_ENDPOS,
A1_INPOS - A20_INPOS, B1_POS - B8_POS,
VarRead1_A - VarRead32_A, VarWrite1_A -VarWrite32_A, and Heart-
Beat

These services communicate with the client via ASCII string.

1070 072 161-102 (97.08) GB

Server Services8-2

8.5 GStatus Special Function
Each error that occurs, including any rho 3.0 error/warning, is entered into
the GStatus of the respective channel. The internal errors (but not the rho
3.0 error/warnings) are subsequently reset.

Activating the GStatus function will now cause the record to be transfer-
red to the client (see Section 9.1.1, "Global Status").

This service should always be active to enable error responses.

1070 072 161-102 (97.08) GB

ROPS3SVR.INI File 9-1

9 ROPS3SVR.INI File
The Online DDE Server utilizes an .INI file featuring the following con-
tents:

[CHANNEL1]
COM=COM1
BAUD=9600
DATA=8
STOP=1
HANDSHAKE=1
TIMEOUT=2
ERRTIMEOUT=300
PARITY=N
[DEFEXTENSION]
EXT=.QLL,.IRD,.PKT,.SYM,.ERR,.ERB,.QLS,.TXT,.INC,.DAT
[SERVERINIT]
REFRESH=500
AUTOINIT=0
KOORDINATEN=1
Language=DEUTSCH
[ITEMLIMITS]
ASCIIITEMS=1
BINAERITEMS=1
READITEMS=32
WRITEITEMS=32
ASCIIACHSEN=20

Section Explanation
CHANNELx Interface data; one section per channel

These entries are set up via the Setup menu
command (see above).
Exception: The entries COM, INIT, and
ERRTIMEOUT must be edited directly in the
ROPS3SVR.INI file.

Entry Explanation
INIT This entry is of importance only with the AUTOINIT=1

setting. If AUTOINIT is set to 1, all interfaces on which
INIT is set to 1 are initialized automatically. In case of
INIT=0, the respective channel will be skipped during
automatic interface initialization.

COM Assignment of physical interface to logical channel.
BAUD Baudrate / transmission speed
DATA Number of data bits
STOP Number of stop bits
HANDSHAKE 0 = No hardware handshake

1 = Hardware handshake
TIMEOUT Timeout interval in seconds with functioning

connection

1070 072 161-102 (97.08) GB

ROPS3SVR.INI File9-2

ERRTIMEOUT Timeout interval (ms) in case of interrupted
connection. A setting of 300 ms or higher is
recommended (see also Section 9.1.10).

PARITY Parity checking:
N = No parity check
E = Even parity
O = Odd parity

[DEFEXTENSION] In the case of a file transfer using wildcard charac-
ters, only files corresponding to the "Ext=" setting of the .INI file will be
selected. Files with the .P2X (PIC250 pgm.) and .BIN extensions (ma-
chine parameters) are never transferred when using wildcard characters
for loading files.
This entry is missing in the factory-supplied version of the ROPS3SRV.INI
file, and must be inserted manually if required.
If this entry is not contained in the ROPS3SRV.INI file, the filename ex-
tensions .QLL, .IRD, .PKT, .SYM, .ERR, :ERB, .QLS, .TXT, .INC, and
.DAT will be used as defaults.

[SERVERINIT] Initialization data for the server.

Entry Explanation
REFRESH The parameters for this entry are set by means of the

Setup menu command, using the Taktrate option
(see above). The parameter value determines the
transfer rate for cyclical data. (The parameter setting
should exceed 200 ms.)

AUTOINIT = 1 At the time the Connect command is invoked,
the interface of this channel is initialized
automatically.

= 0 Auto-initialization OFF
KOORDINATEN Selection of coordinates for axis or tape data to be

transferred in ASCII form.
= 0 Positions in the coordinate system

that is currently enabled.
= 1 Positions in machine coordinates
= 2 Positions in solid coordinates
= 3 Positions in datum coordinates,TO06x and up.

LANGUAGE Selection of language version (German or English
[ITEMLIMITS] Limitation of server items in use. A limitation to the
server items actually required can result in shorter server response times.

Entry Explanation
ASCIIITEMS 0 = Items with ASCII protocol are disabled.

1 = Items with ASCII protocol are enabled.
BINAERITEMS 0 = Items with binary protocol are disabled.

1 = Items with binary protocol are enabled.
READITEMS Number of items for reading user variables.
WRITEITEMS Number of items for wrting user variables.
ASCIIACHSEN Number of items for axis positions, In positions and

End positions, transferred yia ASCII protocol.

1070 072 161-102 (97.08) GB

List of Functions 10-1

10 List of Functions
The ROPS3 DDE Server provides three groups of functions. These com-
prise status, file transfer and online functions.

10.1 Status and Initialization Functions
The functions described below can be used to monitor the server and the
connected control units, and to initialize the respective interfaces.

10.1.1 Global Status
The GStatus function is used to monitor the server as well as the con-
nected control unit. The status may be subject to a one-time request or a
cyclical request. This status record is also automatically included in each
returned response record.

GStatus — One-time request:

Client Message "Item" Data <=> Server
Request XTYP_REQUEST "GStatus" --- =>
status TGSTATUS <= Send GStatus

GStatus — Cyclical request:

Client Message "Item" Data <=> Server
Start

cyclical
XTYP_ADVSTART "GStatus" --- =>

status query TRUE --- <= Acknowledgement
Continue until XTYP_ADVDATA "GStatus" TGSTATUS <= Send GStatus

 Stop DDE_FACK "GStatus --- =>
Stop Status XTYP_ADVSTOP "GStatus --- =>

Start parameters
none

Return parameters
struct TGSTATUS
{
 int nStWarnungen;
 int nStFehler;
 int nFehler;
 UINT nLastDDEError;
 /*-------------------------*/
 UINT f3Frei :3;
 UINT fDOSFehler :1;
 UINT frhoFehler :1;
 UINT fOnFktFehler :1;
 UINT f9Frei :9;
 UINT fServerStatus :1;

1070 072 161-102 (97.08) GB

List of Functions10-2

 int nFc;
 int nState;
 char szItem[50];
 WORD wTransaction;
 WORD wState;
}

Parameter Description
nStWarnungen,
nStFehler Control status, read from the control unit with each

online function; no update in case of basic functions.

Value Explanation
-1 Undefined, control unit status is unknown
 0 No warnings and/or errors
 1 Warnings and/or errors have occurred in the

control unit

nFehler Error code; see Error.h error code file
nLastDDEError Last DDE error; see Error.h error code file

Bit Explanation
0-2 Not yet assigned
3 DOS error; see nFehler
4 rho3 error (during data transfer) see nFehler
5 Error of last online function
5-14 Not yet assigned
15 Server status = ready

nFc Indicates the online function last executed.

Value Explanation
-1 Undefined
1 Dir (list directory)
2 Copy PC-> RC
3 Copy RC-> PC
4 Rename
5 Delete
1003 Search for process
1005 Search for next process
1007 Process selection
1010 KinX position
1011 Kinematics information
1013 Error
1016 Version
1022 Process stop
1023 Set RCA
1030 Signals
1031 rho3 position
1034 RC home position
1037 List processes
1042 Tool

1070 072 161-102 (97.08) GB

List of Functions 10-3

nState Transaction status of item named "szItem"

Value Explanation
0 Ready
1 Initialization
2 Running
3 Stop
4 Waiting for stop
5 Cancel

szItem Name of last item
wTransaction Last DDE command

The flags labelled f3Frei through wState are of significance only for dia-
gnostic purposes; they will not be interpreted during standard operation.

Each error that occurs, including a rho3 error/warning, is entered in the
GStatus of the respective channel. Once this is accomplished, the internal
error is reset (but not the rho3 error/warnings).

With the GStatus function enabled, the server will now send the TGSTA-
TUS record to the client.

1070 072 161-102 (97.08) GB

List of Functions10-4

10.1.2 Control and Monitoring Option for ASCII Services
These functions are used to control and monitor services that exchange
their data via ASCII strings.

10.1.2.1 Control Server Service
The server can utilize the Control_Server service to report the status of
other services to the client.

Control_Server — One-time request

Client Message "Item" Data <=> Server
Request

Control_Server
XTYP_REQUEST "Control_Server" --- =>

szServer-
Control

<= send Control_Server

Control_Server — Cyclical request

Client Message "Item" Data <=> Server
Start cyclical
server control

XTYP_ADVSTART "Control_Server" --- =>

TRUE --- <= Acknowledgement
continue until
status stop

XTYP_ADVDATA "Control_Server" szServer-
Control

Send
Control_Server

DDE_FACK
"Control_Server"

--- =>

Stop status XTYP_ADVSTOP "Control_Server" --- <=

Start parameters
no data

Return parameters
char szServerControl [_MAX_STRING];

Parameter Description
szServerControl Byte 1

Bit 0 1 = Error/warning in rho control
Bit 1 1 = Server error has occurred
Bit 2 1 = UpLoad_A concluded
Bit 3 1 = Download_A concluded
Bits 4-7 Spare
Bytes 2-4 Spare

The server provides control data only if changes occur. Bit 0 and 1 are
preset with 0, and bits 2 and 3 with 1. An interface timeout will be reco-
gnized also if no service remains active.

1070 072 161-102 (97.08) GB

List of Functions 10-5

10.1.2.2 Control Client Service
The client can utilize the Control_Client service for indirect manipulation
of services that are active on the server.

Client Message "Item" Data <=> Server
Start cyclical
client control

XTYP_ADVSTART "Control_Client" --- =>

TRUE --- <= Acknowledgement
Control

server services
XTYP_POKE "Control_Client" szClient-

Control
=>

DDE_FACK
"Control_Client"

--- <= Acknowledgement

Stop status XTYP_ADVSTOP *)
"Control_Client"

--- =>

*) The use of XTYP_ADVSTART and/or XTYP_ADVSTOP is not mandatory.

Start parameters
char szClientControl [_MAX_STRING];

Parameter Description
szClientControl Byte 1

Bit 0 1 = Abort Upload_A
Bit 1 1 = Abort Download_A
Bit 2 1 = Halt no. of axes/tape display
(ASCII)

0 = Start no. of axes/tape display
 (ASCII)

Bit 3 1 = Stop "Server Error" function
0 = Restart "Server Error" function

Bit 4 1 = Halt "Fehler_A" function
0 = Restart "Fehler_A" function

Bit 5 1 = Halt "FehlerFlag" function
0 = Restart "FehlerFlag" function

Bit 6 1 = Halt cyclical reading of user data
0 = Restart cyclical reading, user data

Bit 7 Spare
Bytes 2-4 Spare

All functions that can be disabled are initialized in their respective active
states (bit = 0).

Note: The statuses of all bits are interpreted with each transmission to
the server. The client itself is responsible for administering the statuses of
disabled functions.

Return parameters
none

1070 072 161-102 (97.08) GB

List of Functions10-6

10.1.3 Server Error Function
This function is used for monitoring the server, as well as the DOS and
online functions.

ServerFehler — One-time request

Client Message "Item" Data <=> Server
Request

ServerFehler
XTYP_REQUEST "ServerFehler" --- =>

szServerFehler <= send ServerFehler

ServerFehler — Cyclical request

Client Message "Item" Data <=> Server
Start cyclical
status query

XTYP_ADVSTART "ServerFeh-
ler"

--- =>

TRUE --- <= Acknowledgement
continue until
status stop

XTYP_ADVDATA
"ServerFehler"

szServerFehler <= Send
ServerFehler

DDE_FACK
"ServerFehler"

--- =>

Stop status XTYP_ADVSTOP
"ServerFehler"

--- =>

Start parameters
none

Return parameters
char szServerFehler [_MAX_STRING];

Parameter Description
szServerFehler Error code; ASCII string with concluding "\0";

The internal error is subsequently reset. The error
code is listed in Error.h error code file.
If no server error is present, the service will return
"0\0".

The server provides control data only if changes occur.
The transmission of server errors can be temporarily halted by setting a
control bit in the Control_Client function.

Note: The ServerFehler service neither requires data from the control
unit, nor does it have access to the interface connecting the PC and con-
trol unit. For this reason, in the event that no service is active that requires
this connection, a timeout of the interface cannot be recognized (however,
refer also to Section 9.1.3, "Control_Server Service").

1070 072 161-102 (97.08) GB

List of Functions 10-7

10.1.4 Signalling Control Unit Errors / Warnings
This function is used to monitor the connected control unit.

FehlerFlag — One-time request

Client Message "Item" Data <=> Server
Request

FehlerFlag
XTYP_REQUEST "FehlerFlag" --- =>

szFehlerFlag <= send FehlerFlag

FehlerFlag — Cyclical request

Client Message "Item" Data <=> Server
Start cyclical
status query

XTYP_ADVSTART
"FehlerFlag"

--- =>

TRUE --- <= Acknowledgement
continue until
status stop

XTYP_ADVDATA
"FehlerFlag"

szFehlerFlag <= Send
FehlerFlag

DDE_FACK
"FehlerFlag"

--- =>

Stop status XTYP_ADVSTOP
"FehlerFlag"

--- =>

Start parameters
none

Return parameters
char szFehlerFlag [60];

Parameter Description
szFehlerFlag Control unit status; ASCII string with concluding "\0";

update occurs only if changes are detected.

Value Explanation
0 No error and no warning has occurred
1 Errors and/or warnings are present

The server provides the FehlerFlag error flag signal only if changes oc-
cur.

The transmission of the control unit status can be temporarily halted by
setting a control bit in the Control_Client function.

1070 072 161-102 (97.08) GB

List of Functions10-8

10.1.5 List of Control Errors / Warnings
This function returns errors and warnings relative to rho3.0 operations.

These functions encompass:

• The number of active (current) warnings.

• The number of active (current) errors.

• The associated error code.

• Error message text in ASCII format, including kinematics informa-
tion and/or axis reference.

The client can determine whether to obtain the error message texts from
the control unit or from an ASCII file. In the referred file, each error code
is accompanied by an explanatory text. The file vcan be edited by the
user. This provides the user with the option to generate his own error
messages and supplementary information. In the English-language pro-
gram version, the file is named ERROR.TXT.

The unaltered standard file contains the texts obtained from the signal
description.

10.1.5.1 Syntax of ERROR.TXT File
The file is structured as follows:

No. = Text ; Text is copied to szFehMsg
 (TDDEFEHLER)

PHG display: ‘Text’ ; Text is not copied
Ursache: Cause ; Text is copied to szUrsache

 (TDDEFEHLER)
Hinweis: Remedy ; Text is copied to szHinweis

 (TDDEFEHLER)

Example of entry in ERROR.TXT file:

1 = In Automatic: Programmed Kinematics in SETUP MODE
PHG display: 'In Handbetr. unzul.'
Cause: The referred kinematics are in SETUP MODE.
Hinweis: Switch to AUTOMATIC MODE.

Client Message "Item" Data <=> Server
Initialize error

query
XTYP_POKE "Fehler" nModus =>

DDE_FACK "Fehler" --- <= Acknowledgement
Request XTYP_REQUEST "Fehler" --- =>

error TDDEFEHLER <= Send error

1070 072 161-102 (97.08) GB

List of Functions 10-9

Start parameters

int nModus;

Parameter Description
nModus Display mode

Value Explanation
0 Error texts from control unit
1 Error texts from the FEHLER.TXT file
2 Error texts from the ERROR.TXT file

Return parameters
struct TFEHLER
{
 TGSTATUS GStatus;
 int nAnzWarnungen;
 int nAnzLaufzeitFehler;
 int nAnzSonstigeFehler;
 int nFehKode[_MAX_FEHLER];
 char szFehMsg[_MAX_FEHLER][_MAX_FEH_LEN];
 char szUrsache[_MAX_FEHLER][_MAX_FEH_LEN];
 char szHinweis[_MAX_FEHLER][_MAX_FEH_LEN];
};

Parameter Description
GStatus Global status, see Section 9.1, "Status and

Initialization Functions."
nAnzWarnungen Number of warnings that have occurred in the control

unit
nAnzLaufzeit Number of runtime errors that have occurrred in the

control unit
nAnzSonstige Number of miscellaneous errors that have occurred in

the control unit
nFehKode Error codes and warning codes, identical to the signal

description
szFehMsg[] Associated error message texts
szUrsache[] Associated texts from the error file; Mode 2/3 only
szHinweis[] Associated texts from the error file; Mode 2/3 only

1070 072 161-102 (97.08) GB

List of Functions10-10

10.1.6 List of Control Errors / Warnings in ASCII
This function returns the codes of all errors and warnings concerning the
rho3 in the form of an ASCII string.

Fehler_A — One-time request

Client Message "Item" Data <=> Server
Request
Fehler_A

XTYP_REQUEST "Fehler_A" --- =>

szFehler <= Send Fehler_A

Fehler_A — Cyclical request

Client Message "Item" Data <=> Server
Start cyclical
status query

XTYP_ADVSTART
"Fehler_A"

--- =>

TRUE --- <= Acknowledgement
continue until
status stop

XTYP_ADVDATA
"Fehler_A"

szFehler <= Send
Fehler_A

DDE_FACK
"Fehler_A"

--- =>

Stop status XTYP_ADVSTOP
"Fehler_A"

--- =>

Start parameters
none

Return parameters
char szFehler_A [_MAX_STRING]; "WarnKode,FehKode,...\0"

Parameter Description
szFehler Codes of warnings and errors, similar to signal

description. If no errors are present, only "\0" will be
transmitted.

The server provides the error codes only if changes occur.

The transmission of the error codes can be temporarily halted by setting a
control bit in the Control_Client function.

1070 072 161-102 (97.08) GB

List of Functions 10-11

10.1.7 Initializing an Interface
This function is used to initialize the interface, and to enable all items for
this channel. The UART remains assigned until it is again closed, and
cannot be used by any other application.

The standard interface parameters are as follows:

9600, N, 8, 1, hardware handshake, Timeout=8 sec.

In order to detect any errors that may have occurred during initialization,
the actual interface status should be determined immediately following the
initialization.

Client Message "Item" Data <=> Server
Initialize XTYP_POKE "InitUART" TUART =>
interface DDE_FACK "InitUART" --- <= Acknowledgement

Request status XTYP_REQUEST "GStatus" --- =>
TGSTATUS <= Send GStatus

Start parameters

struct TUART
{
 int nConNo;
 int nBaud;
 char cParity;
 int nDatenBits;
 int nStopBits;
 int nHandShake;
 int nTimeOut;
}

Parameter Description
nComNo Indicates the number of the interface (1-4).
nBaud Baud rate (110, 300, 1200, 4800, 9600, 19200)
cParity Parity (N, E, O)
nDatenBits Data bits (7,8)
nStopBits Stop bits (1,2)
nHandShake Handshake

0= no handshake,
1= hardware handshake

nTimeOut Timeout in seconds (1-99)

Return parameters
none

1070 072 161-102 (97.08) GB

List of Functions10-12

10.1.8 Closing an Interface
This function is used to close an interface, and to release the UART. At
the same time, all cyclical functions of this topic, or channel, are deleted.

Subsequent to closing the interface, only four items remain that are
available for this channel. They are GStatus, InitUART, Formats, and
TopicItemList.

Client Message "Item" Data <=> Server
Reset XTYP_POKE "CloseUART" TCOMNO =>

 Server DDE_FACK "CloseUART" --- <= Acknowledge
Request
status

XTYP_REQUEST "GStatus" --- <=

TGSTATUS <= Send GStatus

Start parameters
int nComNo

Parameter Description
nComNo Indicates the number of the interface (1-4)

Return parameters
none

10.1.9 Automatic Initialization
Automatic initialization of the server interfaces can be preset by making
specific changes to the ROPS3SVR.INI file.

Once the entry AUTOINIT=1 has been added to the [SERVERINIT]
group, a CONNECT will cause the automatic initialization of the respecti-
ve interface with the values belonging to the associated group ([CHAN-
NEL1] .. [CHANNEL4]).

See also Section 9 ROPS3SVR.INI File

1070 072 161-102 (97.08) GB

List of Functions 10-13

10.1.10 Monitoring the Control Unit <-> Server Connection
This function is used to monitor the connection between control unit and
server. In the event that a data transmission error, such as SW Timeout,
Overrun error or similar error, occurs in a cyclical service (with the excep-
tion of HeartBeat itself), the monitoring service returns a constantly in-
crementing counter value. Once the malfunction has been corrected, the
service will return the one-time counter value of zero.

In order to facilitate the restoration of communications on the part of the
server subsequent to correcting a malfunction (such as control start-up or
disruption of the connection between robot control and PC), the HeartBe-
at monitoring function should always remain active.

As the HeartBeat function is enabled only in case of a malfunction, the
service does not normally impose any load upon the runtime behaviour of
the server.

To activate the HeartBeat function, proceed as follows:

Client Message "Item" Data <=> Server
Start cyclical
monitoring

XTYP_ADVSTART
"HeartBeat"

--- =>

TRUE --- <= Acknowledgement
Continue until
status stop, or

until malfunction
remedied

XTYP_ADVDATA
"HeartBeat"

szHeartBeat <= Send
counter value

DDE_FACK "HeartBeat" --- =>
Stop status XTYP_ADVSTOP "HeartBeat" --- =>

Start parameters
none

Return parameters
char szHeartbeat [_MAX_STRING]; "Counter value\0"

Parameter Description
szHeartbeat Counter value

Value Explanation
0 The connection is functional
1 The connection is interrupted.

Note: In normal circumstances, the HeartBeat service neither requires
data from the control unit, nor does it have access to the interface con-
necting the PC and control unit. For this reason, a timeout of the interface
can only be recognized if another active cyclical service requires this con-
nection. In the event of a malfunction, all services of the affected channel
(with the exception of HeartBeat itself) will be terminated. To keep the sy-
stem load of the PC at a minimum until the malfunction can be remedied,
a special timeout value for malfunctions (ERRTIMEOUT) can be set in the
ROPS3SVR.INI file.

See also Section 8, "ROPS3SVR.INI File."

1070 072 161-102 (97.08) GB

List of Functions10-14

10.2 File Transfer Functions
The DDE Server provides five commands for file handling functions:

Initializing one of these functions causes the simultaneous disablement of
all file transfer functions for this topic, or channel. To an attempted initia-
lization, the server will respond by returning the DDE_FNOTPROCESSED
message.

In the event of a file transfer with the use of wildcard characters, only files
that correspond to the "WildcardExt=" setting in the .INI file are selected
(see also Section 7, "ROPS3SRV.INI File"). Filenames with the filename
extensions .P2X (PIC250 programs) and .BIN (machine parameters) are
automatically excluded from file transfers with wildcard characters.

10.2.1 Download Command
The client can utilize the Download command to load files into the control
unit. To effect the initialization, the client transfers the filename to the ser-
ver. The filename may contain wildcard characters. The file transfer is in-
itiated by starting the cyclical query.

During the file transfer, the server reports after each packet of 200 bytes
the total number of transferred bytes to the client. The completion of a
transfer is signalled by sending "nStatus=2" to the client. If the transfer job
encompasses several files, the next transfer is then started. The number
of files remaining to be transferred is indicated in dwCounter.

At any time, the client has the option to abort the file transfer by sending
the XTYP_ADVSTOP "Download" command.

If an error occurs during the downloading phase, this is indicated by me-
ans of "nStatus=-1", and the transfer job is interrupted.

Client Message "Item" Data <=> Server
Initialize transfer XTYP_POKE "Download" TCALLDOWNLOAD =>

DDE_FACK "Download" --- <= Acknowledge
Start

cyclical query
XTYP_ADVSTART "Down-

Load"
--- =>

TRUE --- <= Acknowledge
Continue until end
of file, error or stop

XTYP_ADVDATA "Down-
Load"

TUPLOADRET <= Transfer
file(s)

DDE_FACK "Download" --- =>
until all files have been

transferred
Stop Transfer XTYP_ADVSTOP "Download" --- =>

Start parameters
struct TCALLDOWNLOAD
{
char szSRCName[_MAX_DOSNAME];
char szDSTName[_MAX_RHONAME]
int nUeberschreiben
}

1070 072 161-102 (97.08) GB

List of Functions 10-15

Parameter Description
szSRCName Complete filename (hard disk, path, name, extension)

of the file to be transferred. Name and extension may
be substituted by wildcard characters ("*").

szDSTName Control unit file subsequent to a download. Name and
extension may be substituted by wildcard characters
("*"). Although the filename must not be the same as
that in szSRCName, the filename extension must be
identical.

nUeberschreiben Overwrite rho file; this parameter may have one of two
values:

Value Explanation
0 The file is not overwritten. If the file is found to exist, the

task is aborted.
1 The file is overwritten.

Return parameters
struct TUPLOADRET
{
 TGSTATUS GStatus;
 char szActName[_MAX_PATH];
 int nStatus;
 DWORD dwCounter;
 DWORD dwAnzDat;
}

Parameter Description
GStatus Global status, see status functions
szActName Name of rho3 control
nStatus Transfer status; this parameter may have one of the

following values:

Value Explanation
0 File transfer is initialized; counter = file length
1 File transfer in progress; counter = number of transferred

bytes
2 File transfer concluded; counter = file length
-1 Errors, see GStatus

dwCounter Returns the number of transferred databytes
dwAnzDat Returns the number of files remaining to be

transferred, which in turn is derived from the wildcard
characters. This counter is decremented after each file
transfer.

See also Section 7, "ROPS3SVR.INI File."

1070 072 161-102 (97.08) GB

List of Functions10-16

10.2.2 ASCII Download Command
The ASCII Download function behaves exactly like the standard Down-
load command described in the previous section, with the exception that
the transfer parameters take the form of ASCII strings.

Download_A with download status message upon request:

Client Message "Item" Data <=> Server
Start download XTYP_POKE "DownLoad_A" szDownLoad =>

DDE_FACK "DownLoad_A" --- <= Acknowledge
Request

download status
XTYP_REQUEST "Down-

Load_A"
--- =>

szDownLoadRet <= Send down-
load status

DownLoad_A with cyclical download status message:

Client Message "Item" Data <=> Server
Initialize transfer XTYP_ADVSTART

"DownLoad_A"
--- =>

TRUE --- <= Acknowledge
Start

cyclical query
XTYP_POKE "DownLoad_A" szDownLoad =>

DDE_FACK "DownLoad_A" --- <= Acknowledge
Continue until end
of file, error or stop

XTYP_ADVDATA "Down-
Load_A"

szDownLoadRet <= Transfer
file(s)

--- =>
until all files have been

transferred
Stop Transfer XTYP_ADVSTOP "Down-

Load_A"
--- =>

Start parameters
char szDownLoad [_MAX_STRING]; "SourceName, DestName, ü\0"

1070 072 161-102 (97.08) GB

List of Functions 10-17

Component Description
SourceName Complete filename (hard disk, path, name, extension)

of the file to be transferred. Name and extension may
be substituted by wildcard characters ("*").

DestName Control unit file subsequent to a download. Name and
extension may be substituted by wildcard characters
("*"). Although SourceName and DestName can be
different, the filename extension must be identical.

ü Overwrite rho file; this parameter may have one of two
values:

Value Explanation
0 The file is not overwritten. If the file is found to exist, the

task is aborted.
1 The file is overwritten.

The three components are separated by commas.

Return parameters
char szDownLoadRet[_MAX_STRING];"DestName,Status, Coun-
ter,AnzDat\0"

Component Description
DestName Control filename during download process.
Status Transfer status; this parameter may have one of the

following values:

Value Explanation
0 File transfer is initialized; counter = file length
1 File transfer in progress; counter = number of transferred

bytes
2 File transfer concluded; counter = file length
-1 Errors, see ServerFehler

Counter Returns the number of transferred databytes (see
status).

AnzDat Returns the number of files remaining to be
transferred, which in turn is derived from the wildcard
characters. This counter is decremented after each file
transfer.

See also Section 7, "ROPS3SVR.INI File."

Monitoring or termination of the function can be accomplished by means
of the Control_Client function. Errors that have occurred are returned by
the ServerFehler function.

1070 072 161-102 (97.08) GB

List of Functions10-18

10.2.3 Upload Command
The client can utilize the Upload command to load files from the control
unit into the PC.

To effect the initialization, the client transfers the filename to the server.
The filename may contain wildcard characters.

The file transfer is initiated by starting the cyclical query.

During the file transfer, the server reports after each packet of 200 bytes
the total number of transferred bytes to the client. The completion of a
transfer is signalled by sending "nStatus=2" to the client. If the transfer job
encompasses several files, the next transfer is then started. The number
of files remaining to be transferred is indicated in dwCounter.

At any time, the client has the option to abort the file transfer by sending
the XTYP_ADVSTOP "Upload" command.

If an error occurs during the downloading phase, this is indicated by me-
ans of "nStatus=-1".

Client Message "Item" Data <=> Server
Initialize transfer XTYP_POKE "Upload" TCALLUPLOAD =>

DDE_FACK "Upload" --- <= Acknowledge
Start

cyclical query
XTYP_ADVSTART

"UpLoad"
--- =>

TRUE --- <= Acknowledge
Continue until end
of file, error or stop

XTYP_ADVDATA "UpLoad" TUPLOADRET <= Transfer
file(s)

DDE_FACK "Upload" --- =>
until all files have been

transferred
Stop Transfer XTYP_ADVSTOP "Upload" --- =>

1070 072 161-102 (97.08) GB

List of Functions 10-19

Start parameters
TCALLUPLOAD
{
 char szSRCName[_MAX_PATH];
 char szDSTName[_MAX_RHONAME];
 int nUeberschreiben
}

Parameter Description
szSRCName Control unit filename, name and extension can be

substituted by wildchard characters ("*"). While the
filename must not be identical to that in szSRCName,
the extension must be identical.

szDSTName Complete filename (drive, path, name, extension) of
the PC file. Name and extension may be substituted
by wildcard characters ("*").

nUeberschreiben Overwrite PC file. This parameter can have one of the
following values:

Value Explanation
0 File is not overwritten. If the file is found to exist, the pro-

cess is aborted.
1 File is overwritten.

Return parameters
struct TUPLOADRET
{
 TGSTATUS GStatus;
 char szActName[_MAX_PATH];
 int nStatus;
 DWORD dwCounter;
 DWORD dwAnzDat;
}

Parameter Description
GStatus Global status, see "Status Functions"
szActName der rho3-Name
nStatus Transfer status; This parameter can have one of the

following values:

Value Explanation
0 File transfer initalized and running. Counter = length of file
1 File transfer in progress. Counter = Number of bytes

transferred
2 File transfer completed. Counter = file length
-1 Errors, see GStatus

dwCounter Returns the number of bytes transferred, see nStatus.
dwAnzDat Returns the number of files remaining to be

transferred, derived from wildcard characters. This
counter is decremented with each file transfer.

See also Section 9 ROPS3SVR.INI File

1070 072 161-102 (97.08) GB

List of Functions10-20

10.2.4 ASCII Upload Command
The ASCII Upload function behaves exactly like the standard Upload
command described in the previous section, with the exception that the
transfer parameters take the form of ASCII strings.

UpLoad_A with download status message upon request:

Client Message "Item" Data <=> Server
Start upload XTYP_POKE "UpLoad_A" szUpLoad =>

DDE_FACK "UpLoad_A" --- <= Acknowledge
Request

upload status
XTYP_REQUEST

"UpLoad_A"
--- =>

szUpLoadRet <= Send upload
status

UpLoad_A with cyclical download status message:

Client Message "Item" Data <=> Server
Initialize transfer XTYP_ADVSTART

"UpLoad_A"
--- =>

TRUE --- <= Acknowledge
Start

cyclical query
XTYP_POKE "UpLoad_A" szUpLoad =>

DDE_FACK "UpLoad_A" --- <= Acknowledge
Continue until end
of file, error or stop

XTYP_ADVDATA
"UpLoad_A"

szUpLoadRet <= Transfer
file(s)

--- =>
until all files have been

transferred
Stop Transfer XTYP_ADVSTOP

"UpLoad_A"
--- =>

1070 072 161-102 (97.08) GB

List of Functions 10-21

Start parameters
char szUpLoad [_MAX_STRING]; "SourceName, DestName, ü\0"

Component Description
SourceName Control unit filename for upload. Name and extension

may be substituted by wildcard characters ("*").
DestName Complete filename (drive, path, name, extension) odf

file to be transferred. Name and extension may be
substituted by wildcard characters ("*").

ü Overwrite PC file; this parameter may have one of two
values:

Value Explanation
0 The file is not overwritten. If the file is found to exist, the

task is aborted.
1 The file is overwritten.

The three components are separated by commas.

Return parameters
char szDownLoadRet[_MAX_STRING];"DestName,Status, Coun-
ter,AnzDat\0"

Component Description
DestName Control filename during upload process.
Status Transfer status; this parameter may have one of the

following values:

Value Explanation
0 File transfer is initialized; counter = file length
1 File transfer in progress; counter = number of bytes

transferred
2 File transfer concluded; counter = file length
-1 Errors, see ServerFehler

Counter Returns the number of transferred databytes (see
Status).

AnzDat Returns the number of files remaining to be
transferred, which in turn is derived from the wildcard
characters. This counter is decremented after each file
transfer.

See also Section 9, "ROPS3SVR.INI File."

Monitoring or termination of the function can be accomplished by means
of the Control_Client function. Errors that have occurred are returned by
the ServerFehler function.

1070 072 161-102 (97.08) GB

List of Functions10-22

10.2.5 Directory Command
The Directory command returns a listing of the control unit files.

To start initialization, the filename is transferred. Wildcards are supported.
The client then starts the directory transfer.

The server first sends the control software version identifier, followed by
the filenames, including file length and date of last modification. The list is
followed by the number of files and the storage capacity they occupy. The
last item returned is the size of both available and occupied storage ca-
pacity. The client can cancel the function at any time.

Client Message "Item" Data <=> Server
Initialize XTYP_POKE "Dir" szDirName =>
Dir query DDE_FACK "Dir" --- <= Acknowledge

Start cyclical XTYP_ADVSTART "Dir" --- =>
query TRUE --- <= Acknowledge

continue until Dir
transferred,

XTYP_ADVDATA "Dir" TRHO3DIR <= Send Dir

or Stop DDE_FACK "Dir" --- =>
Stop Dir XTYP_ADVSTOP "Dir" --- =>

Start parameters
char szDirName[_MAX_RHONAME];

Parameter Description
szDirName Control unit filename, name and extension can be

substitued by wildcard characters ("*").

Return parameters
struct TDIR
{
 GSTATUS GStatus;
 int nStatus;
 char szData[_MAX_RHO3_DIR];
}

Parameter Description
GStatus Global status, see Section 9.1, "Status and

Initialization Functions."
nStatus Dir status; this parameter can have one of the

following values:

Value Explanation
1 szData contains the sofware version ID and the control

unit date
2 szData contains a filename
3 szData contains the .P2X filename; length in words
4 szData contains the number of files
5 szData contains the memory contents; end of transfer
-1 Error, see GStatus

1070 072 161-102 (97.08) GB

List of Functions 10-23

szData Zero-terminated ASCII string. This parameter can
have one of the following contents:

Contents Format (with example)
"123456789012345678901234567890123456789012345678"

SW-Version "rho3 : TO06F 03.04.1995"
File " WERKZ .IRD 1012 29.03.95 08:44"
P2X File " PIC200 .P2X 688 03.04.95 13:10"
No. bytes " 1 file occupied 1012 Byte."
Memory capy. " 122880 bytes of 124160 available."

1070 072 161-102 (97.08) GB

List of Functions10-24

10.2.6 Rename Command
The Rename command can be used to rename a file in the rho3. The
function does not support wildcard characters. The .P2X file cannot be
renamed with the use of this function.

To ensure the detection of errors that may have occurred as a result of a
Rename action, the current status should be determined subsequent to
executing the command (using GStatus or ServerFehler functions).

Client Message "Item" Data <=> Server
Initialize Ren XTYP_POKE "Ren" TREN =>

query DDE_FACK "Ren" --- <= Acknowledge
Request XTYP_REQUEST "GStatus" --- =>
status TGSTATUS <= Send GStatus

Start parameters
struct TREN
{
 char szOldNAme[_MAX_RHONAME];
 char szNewNAme[_MAX_RHONAME];
 int nUeberschreiben;
}

Parameter Description
szOldName Old name of control unit file
szNewName New name of control unit file
nUeberschreiben Overwrite rho3 file. This parameter may have one of

the following values:

Value Explanation
0 The file is not overwritten. If the file is found to exist, the

process is aborted.
1 File is overwritten.

Return parameters
none

1070 072 161-102 (97.08) GB

List of Functions 10-25

10.2.7 Delete Command
The Delete command is used to delete a control unit file. Wildcard cha-
racters are supported. Subsequent to initialization and the start of the cy-
clical query, the server reports all deleted files to the client. The task can
be aborted at any time. The Delete command cannot be used to delete
the .P2X file.

Client Message "Item" Data <=> Server
Initialize XTYP_POKE "Del" szDelName =>

Del command DDE_FACK "Del" --- <= Acknowledge
Start XTYP_ADVSTART "Del" --- =>

cyclical query TRUE --- <= Acknowledge
continue until
all files have

XTYP_ADVDATA "Del" TDEL <= Send Delete
response

been deleted DDE_FACK "Del" --- =>
Stop Delete XTYP_ADVSTOP "Del" --- =>

Start parameters
char szDelName[_MAX_RHONAME];

Parameter Description
szDelName Name of control unit file; name and extension can be

substituted by wildcard characters("*").

Return parameters
struct TDEL
{
 TGSTATUSGStatus;
 int nAnzDateienl
 char szActName[_MAX_RHONAME];
}

Parameter Description
GStatus Global status, see Section 9.1, "Status and

Initialization Functions."
nAnzDateien Number of files remaining to be deleted.
szActName Name name of last deleted control unit file

1070 072 161-102 (97.08) GB

List of Functions10-26

10.3 Online Functions
Online functions are used for visualizing control unit statuses, and for re-
mote control purposes. The online function commands are available, ef-
fective with control unit version TO04x.

10.3.1 Kinematics Information
The KinInfo kinematics information command returns information about
all kinematics that are applied in the control unit.

Client Message "Item" Data <=> Server
Request XTYP_REQUEST"KinInfo" --- =>

kinematics information TDDEKININFO <= send KinInfo

Start parameters
none

Return parameters
struct TDDEKINDATA
{
 char szKinName[_MAX_KINNAME];
 int nReferenz;
 int nAchsAnzahl;
 int nBandAnzahl;
};

struct TDDEKININFO
{
 TGSTATUS GStatus;
 int nKinAnzahl;
 TDDEKINDATA KinArray[_MAX_KIN];
};

Parameter Description
TGStatus Global status, see Section 9.1, "Status and

Initialization Functions."
nKinAnzahl Number of applied kinematics
TDDEKINDATA:
szKinName Name of individual kinematics
nReferenz Indicates whether this kinematic has referenced

(TRUE/FALSE)
nAchsAnzahl Number of axis, this kinematic
nBandAnzahl Number of tapes, this kinematic

1070 072 161-102 (97.08) GB

List of Functions 10-27

10.3.2 Axis Positions
The KinAchsen axis position command can be used to request the axis
and tape data from the control unit. The data can be requested per indivi-
dual kinematics (KinAchsen) or globally across all kinematics (GlobAch-
sen).

There are two methods of execution for the Client.

10.3.2.1 Client Requires Data Only Once
The client requests the server to provide the data. For intilaization purpo-
ses, it transfers the TACHSINFO record. The record describes which
axes and which tapes are to be sent, and in what sequence they are to be
sent.
The axis data can then be requested.

Axis information, per individual kinematics:

Client Message "Item" Data <=> Server
Request axis XTYP_POKE "KinAchsen" TACHSINFO =>
information DDE_FACK "KinAchsen" --- <= Acknowledge

for individual XTYP_REQUEST"AchsData" --- => Send
kinematics TACHSDATEN <= KinAchsen

Cross-kinematics (global) axis information:

Client Message "Item" Data <=> Server
Request cross-kinematics XTYP_POKE "GlobAchsen" TACHSINFO =>

(global) DDE_FACK "GlobAchsen" --- <= Acknowledge
axis information XTYP_REQUEST"AchsData" --- <=

TACHSDATEN => Send
GlobAchsen

10.3.2.2 Polling Axis Data
The client initializes the cycle by sending the TACHSINFO record. The
cycle is then started. The server will now continue to supply axis data until
the client terminates the request by sending Stop. The client has the opti-
on to stop the polling cycle in order to start a file transfer, for example.

Client Message "Item" Data <=> Server
Initialize XTYP_POKE "ADVKinAchsen" TACHSINFO =>

DDE_FACK "ADVKinAchsen" --- <= Acknowledge
Start cycle XTYP_ADVSTART "ADVKinAchsen" --- =>

TRUE --- <= Acknowledge
contuinue until

Stop
XTYP_ADVDATA "ADVKinAchsen" TACHSDATEN <= ADVKinAchsen

senden
DDE_FACK "ADVKinAchsen" --- =>

Stop XTYP_ADVSTOP"ADVKinAchsen" --- =>

The application of the cross-kinematics command is identical.

1070 072 161-102 (97.08) GB

List of Functions10-28

Start parameters
struct TACHSINFO
{
 int nFc;
 int nKinNr;
 int nKoord;
 int nAchsAnfang;
 int nAchsAnz;
 int nBandAnfang;
 int nBandAnz;
};

Parameter Description
nFc Determines the subfunction. This parameter can have

one of the following values:

Value Explanation
OM_BAND Returns the tape position
OM_NAME Returns SC or MC names
OM_STAPOSBND Returns axis positions, tracking, end point, in-pos flag,

RK, referenced, auto.
OM_STAPOSBND Returns OM_STAPOS + tape position

nKinNr Number of kinematics with KinAchsen item,
otherwise not defined.

nKoord Defines the desired coordinate system. This
parameter can have one of the following values:

Value Explanation
AUTO_SYS Returns the axis positions in the currently active

coordinate system.
MK_SYS Returns the axis positions in machine coordinates

(MC).
RK_SYS Returns the axis positions in space coordinates (SC).
UK_SYS Returns the base coordinates, TO06x & up
nAchsAnf Defines the first axis.
nAchsAnz Defines the number of desired axes.
nBandAnf Defines the first tape.
nBandAnz Defines the number of desired tapes.

1070 072 161-102 (97.08) GB

List of Functions 10-29

Return parameters
struct TACHSDATEN
{
 TGASTAUS GStatus;
 int nAchsAnz;
 char aszName [_MAX_ACHS][_MAX_ACHSNAME];
 int nKoord;
 int nInPos [_MAX_ACHS];
 int nReferiert [_MAX_ACHS];
 int nAutoHand [_MAX_ACHS];
 float AchsPos [_MAX_ACHS];
 float EndPos [_MAX_ACHS];
 float NachPos [_MAX_ACHS];
 int nBandAnz;
 char szBandName [_MAX_BAND][_MAX_BNDNAME];
 float BandPos [_MAX_BAND];
};

Parameter Description
GStatus Global status, see Section 9.1, "Status and

Initialization Functions."
aszName Coordinate names and/or axis names
nKoord Axis position coordinate system (SC, MK, UK)
nInPos In-pos flag, indicates whether the axis is IN

POSITION.
nReferiert Indicates if this axis has referenced.
nAutoHand Indicates whether the kinematics associated with this

axis are in automatic or manual mode.
AchsPos Indicates the current axis position in SC or MC. This

value is invalid for non-referenced SC axes.
EndPos Returns the programmed end position. This value is

invalid in manual mode.
NachPos Returns the nominal tracking value
nBandAnz Number of tapes
szBandName Tape name set up similar to MPP
BandPos Current tape position

1070 072 161-102 (97.08) GB

List of Functions10-30

10.3.3 Axis Data in ASCII
This function can be used to request the axis and tape data from the con-
trol unit. The axis position, end point and InPos flag can be determined for
up to 20 axes.

One-time request for axis and/or tape data:

Client Message "Item" Data <=> Server
Request

axis / tape data
XTYP_REQUEST "item" --- =>

szAchsDaten <= Send
axis/tape

data

Cyclical request for axis and/or tape data:

Client Message "Item" Data <=> Server
Start cycle XTYP_ADVSTART "item" --- =>

TRUE --- <= Acknowledge
contuinue until

Stop
XTYP_ADVDATA "item" szAchsDaten <= Send

axis data
DDE_FACK "item" --- =>

Stop XTYP_ADVSTOP"item" --- =>

Items:
A1_POS .. A20_POS Requesting axis positions
A1_ENDPOS .. A20_ENDPOS Requesting axis end positions (useful

only in Automatic mode)
A1_INPOS .. A20_INPOS InPos flag; indicates whether the axis

is in position.
B1_POS .. B8_POS Requesting tape positions
(The number of items can be limited in the ROPS3SVR.INI file.)

Start parameters
none

Return parameters
char szAchsDaten[60] "+123456.78\0"
The server supplies axis data only if the data has been changed. The cy-
clical display of data is interrupted by file transfer functions (Upload,
Download, etc.) The axis data is provided in the "6.2" format used by the
control unit.

The transmission of axis and/or tape data can be temporarily halted by
setting a control bit in the Control_Client function.

Notes: In the event that the server recognizes an error (e.g. invalid num-
ber of axes), all items of the channel, carrying axis or tape information will
be closed.

The coordinate system for axis data can be selected in the
ROPS3SVER.INI file ([SERVERINIT] - KOORDINATEN).

1070 072 161-102 (97.08) GB

List of Functions 10-31

10.3.4 Tool
The Tool function provides a cyclical return of tool name and tool coordi-
nates (TO06x and up).

Client Message "Item" Data <=> Server
Initialize tool XTYP_POKE "Werkzeug" nKinNr =>

query DDE_FACK "Werkzeug" --- <= Acknowledge
Start cyclical XTYP_ADVSTART "Werkzeug" --- =>

query TRUE --- <= Acknowledge
continue

until
XTYP_ADVDATA "Werkzeug" TWERKZEUG <= Send

tool
Stop DDE_FACK "Werkzeug" --- =>

Stop tool function XTYP_ADVSTOP "Werkzeug" --- =>

Start parameters
int nKinNr;

Parameter Description
nKinNr Number of kinematics, the tool of which is to be

determined.

Return parameters
struct TWERKZEUG
{
 TGSTATUSGStatus;
 char szWerkName[_MAX_WERKNAME];
 float Value[_MAX_VAL];
};

Parameter Description
GStatus Global status, see Section 9.1, "Status and

Initialization Functions."
szWerkName Name of the currently selected tool for these

kinematics
Value[] Gripper X, Gripper-Y, Gripper Z, Gripper orientation1,

Gripper orientation2, Gripper orientation3

1070 072 161-102 (97.08) GB

List of Functions10-32

10.3.5 SC System
The SC System function (RK_Sys command) provides a cyclical return of
the SC system (TO06x and up).

Client Message "Item" Data <=> Server
Initialize XTYP_POKE "RK_Sys" nKinNr =>

SC system DDE_FACK "Rk_Sys" --- <= Acknowledge
Start cyclical XTYP_ADVSTART "RK_Sys" --- =>

query TRUE --- <= Acknowledge
Continue until XTYP_ADVDATA "RK_Sys" TRK_SYSTEM <= Senden

Stop DDE_FACK "RK_Sys" --- => RK_Sys
Stop SC system XTYP_ADVSTOP "RK_Sys" --- =>

Start parameters
int nKinNr;

Parameter Description
nKinNr Number of kinematics, the SC system of which is to

be determined.

Return parameters
struct TRK_SYSTEM
{
 TGSTATUSGStatus;
 float Value [_MAX_VALUE];
}

Parameter Description
GStatus Global status, see Section 9.1, "Status and

Initialization Functions."
Value[] Shifting the SC in X-direction,

Shifting the SC in Y-direction,
Shifting the SC in Z-direction,
Rotating a about X,
Rotating b about Y,
Rotating c about Z.

1070 072 161-102 (97.08) GB

List of Functions 10-33

10.3.6 Process Selection
The Process Selection function (ProzAnw command) is used to select a
process within the control unit.

Client Message "Item" Data <=> Server
Initialize XTYP_POKE "ProzAnw" TPROZANW =>

process selection DDE_FACK "ProzAnw" --- <= Acknowledge
Select XTYP_REQUEST "ProzAnw" --- =>

process TPROZSTATUS <= Send ProzAnw

Start parameters
struct TPROZANW
{
 char szrhoName[_MAX_RHONAME];
 int nPrio;
};

Parameter Description
szrhoName Steuerungsdateiname
nPrio Priorität des Prozesses

Return parameters
struct TPROZSTATUS
{
 TGSTATUSGStatus;
 int nProzFound;
 char szProzName[_MAX_RHONAME];
 int nProzArt;
 int nAnzSubProz;
 int nProzPrio;
 int nProzZustand;
 long ProzFehler;
 char szFehlerText[_MAX_FEHLEN];
 int nProzZeile;
 int nProzSubZeile;
 int nProzKin;
 int nProzEbene;
 char szHPName[_MAX_RHONAME];
};

1070 072 161-102 (97.08) GB

List of Functions10-34

Parameter Description
GStatus Global status, see Section 9.1, "Status and

Initialization Functions."
nProzFound Indicates whether the requested process is available

(TRUE/FALSE)
szProzName Name of process
nProzArt Indicates the process type. This parameter can have

one of the following values:

Value Explanation
0 Standard process
1 Permanent process
2 Subprocess

nAnzSubProz returns the number of subprocesses within this main
process.

nProzPrio Indicates the process priority.
nProzZustand Indicates the process status. This parameter can have

one of the following values:

Value Explanation
0 Process in standby
1 Process ready
2 Process haltet
3 Process running
6 Process jogging
7 Process haltet by error

ProzFehler Process error, see error list
szFehlerText Error message in ASCII text
nProzZeile Indicates currently active QLL line
nProzSubZeile Indicates QLL line of insertion file
nProzKin Active kinematics of this process
nProzEbene Main program level
szHPName External main program

1070 072 161-102 (97.08) GB

List of Functions 10-35

10.3.7 Process Stop
This function (ProzStop command) can be used to stop a process in the
control unit.

In order to detect any errors that may have occurred during the execution
of this command, the actual interface status should be determined imme-
diately following the initialization.

Client Message "Item" Data <=> Server
Process Stop XTYP_POKE "ProzStopp" szProzName =>

DDE_FACK "ProzStopp" --- <= Acknowledge
Request XTYP_REQUEST "GStatus" --- <=
 status TGSTATUS <= Send ProzStopp

Start parameters
char szProzName[_MAX_RHONAME];

Parameter Description
szProzName Name of a main process

Return parameters
none

1070 072 161-102 (97.08) GB

List of Functions10-36

10.3.8 Process List
This function (ProzListe command) dynamically supplies the list of all
processes.

Client Message "Item" Data <=> Server
Start cyclical XTYP_ADVSTART "ProzListe" --- =>

query TRUE --- <= Acknowledge
Contunie until

Stop
XTYP_ADVDATA "ProzListe" TDDEPROZLISTE <= Send ProzListe

DDE_FACK "ProzListe" --- =>
Stop Process List XTYP_ADVSTOP "ProzListe" --- =>

Start parameters
keine

Return parameters
struct TPARRAY
{
 char szProzName[_MAX_RHONAME];
 unsigned char ProzZustand;
 int nQLLZeile;
};

struct TPROZLISTE
{
 TGSTATUSGStatus;
 int nAnzPerm;
 int nAnzNorm;
 int nAnzSub;
 int nAnzErr;
 TPARRAY ProzArray[_MAX_PROZ];
};

Parameter Description
GStatus Global status, see Section 9.1, "Status and

Initialization Functions."
nAnzPerm Number of permanent processes
nAnzNorm Number of standard processes
nAnzSub Number of subprocesses
nAnzErr Number of errored processes
szProzName Process name; main processes are identified by .IRD

extension. Associated subprocesses have the same
name, and .Sxx extension, where xx is the number of
the subprocess.

ProzZustand Indicates the process status. This parameter can have
one of the following values:

Value Explanation
0 Process in standby
1 Process ready
2 Process haltet
3 Process running
6 Process jogging
7 Process haltet by error

nQLLZeile Indicates the QLL line that is currently active.

1070 072 161-102 (97.08) GB

List of Functions 10-37

10.3.9 Process Status
This function (ProzStatus command) cyclically supplies the status of a
process.

Client Message "Item" Data <=> Server
Initialize XTYP_POKE "ProzStatus" szProzName =>
request DDE_FACK "ProzStatus" --- <= Acknowledge

Start cyclical XTYP_ADVSTART "ProzStatus" --- =>
request TRUE --- <= Acknowledge

Continue until XTYP_ADVDATA "ProzStatus" TPROZSTATUS <= Send ProzStatus
Stop DDE_FACK "ProzStatus" --- =>

Stop Status XTYP_ADVSTOP "ProzStatus" --- =>

Start parameters
char szProzName[_MAX_RHONAME];

Parameter Description
szProzName Name of process

Return parameters
struct TPROZSTATUS
{
 TGSTATUSGStatus;
 int nProzFound;
 char szProzName[_MAX_RHONAME];
 int nProzArt;
 int nAnzSubProz;
 int nProzPrio;
 int nProzZustand;
 long ProzFehler;
 char szFehlerText[_MAX_FEHLEN];
 int nProzZeile;
 int nProzSubZeile;
 int nProzKin;
 int nProzEbene;
 char szHPName[_MAX_RHONAME];
};

1070 072 161-102 (97.08) GB

List of Functions10-38

Parameter Description
GStatus Global status, see Section 9.1, "Status and

Initialization Functions."
nProzFound Indicates whether the requested process is available

(TRUE/FALSE)
szProzName Name of process
nProzArt Indicates the process type. This parameter can have

one of the following values:

Value Explanation
0 Standard process
1 Permanent process
2 Subprocess

nAnzSubProz Returns the number of subprocesses of this main
process.

nProzPrio Indicates the process priority.
nProzZustand Indicates the process status. This parameter can have

one of the following values:

Value Explanation
0 Process in standby
1 Process ready
2 Process haltet
3 Process running
6 Process jogging
7 Process haltet by error

ProzFehler Process error, see error list
szFehlerText Error message in ASCII text
nProzZeile Indicates currently active QLL line
nProzSubZeile Indicates QLL line of insertion file
nProzKin Active kinematics of this process
nProzEbene Main program level
szHPName External main program

1070 072 161-102 (97.08) GB

List of Functions 10-39

10.3.10 Control Reset Command
This function can be used to issue the Control Reset command.

Client Message "Item" Data <=> Server
Execute XTYP_REQUEST "GRDStellung" --- =>

Control Reset TGSTATUS <= Send GStatus

Start parameters
none

Return parameters
struct TGSTATUS
{
 int nStWarnungen;
 int nStFehler;
 int nFehler;
 UINT nLastDDEError;
 /*-------------------------*/
 UINT f3Frei :3;
 UINT fDOSFehler :1;
 UINT frhoFehler :1;
 UINT fOnFktFehler :1;
 UINT f9Frei :9;
 UINT fServerStatus :1;
 int nFc;
 int nState;
 char szItem[50];
 WORD wTransaction;
 WORD wState;
}

Parameter Description
nStWarnungen, Control unit status; read from the control unit
nStFehler with each online function, no update for basic

functions.

Value Explanation
-1 Not defined; control unit status is unknown
 0 No warnings and/or errors
 1 Warning and/or errors have occurred in the control unit

nFehler Error code; see Error.h error code file
nLastDDEError Last DDE error; see Error.h error code file

1070 072 161-102 (97.08) GB

List of Functions10-40

Bit Explanation
0-2 Not yet assigned
3 DOS error; see nFehler
4 rho3 error (during data transfer) see nFehler
5 Error of last online function
5-14 Not yet assigned
15 Server status = ready

nFc Indicates the online function last executed.

Value Explanation
-1 Undefined
1 Dir (list directory)
2 Copy PC-> RC
3 Copy RC-> PC
4 Rename
5 Delete
1003 Search for process
1005 Search for next process
1007 Process selection
1010 KinX position
1011 Kinematics information
1013 Error
1016 Version
1022 Process stop
1023 Set RCA
1030 Signals
1031 rho3 position
1034 RC home position
1037 List processes
1042 Tool

Value Explanation
0 ready
1 init
2 running
3 stop
4 waiting for stop
5 Abort

szItem Name of last item
wTransaction Last DDEcommand

As the flags labelled f3Frei through wState are used for diagnostic purpo-
ses only, their interpretation is not required in standard operation.

1070 072 161-102 (97.08) GB

List of Functions 10-41

10.3.11 Set RCA
This function can be used to set the RCA signals 10.1 through 10.8.

In order to detect any errors that may have occurred during the execution
of this command, the actual interface status should be determined imme-
diately following this function.

Client Message "Item" Data <=> Server
Set XTYP_POKE "SetRCA" SigArray =>

RCA signals DDE_FACK "SetRCA" --- <= Acknowledge
Request XTYP_REQUEST "GStatus" --- =>
status TGSTATUS <= Send GStatus

Start parameters
int SigArray[8];

Parameter Description
SigArray Defines the nominal status of the signals. This

parameter can have one of the following values:

Wert Explanation
0 low
1 high
127 don’t care

Return parameters
none

1070 072 161-102 (97.08) GB

List of Functions10-42

10.3.12 Signal Status
This function is used for cyclical signal status queries. The signals can be
requested only in byte mode.

Client Message "Item" Data <=> Server
Initialize XTYP_POKE "Signale" TMIXEDARRAY =>
request DDE_FACK "Signale" --- <= Acknowledge

Start cyclical XTYP_ADVSTART "Signale" --- =>
quesry TRUE --- <= Acknowledge

Continue until XTYP_ADVDATA "Signale" TDDESIGNALE <= Send signals
Stop DDE_FAck "Signale" --- =>

Stop signals XTYP_ADVSTOP "Signale" --- =>

Start parameters
struct TMIXED
{
 int nSigTyp;
 int nSigAdr;
};

struct TMIXEDARRAY
{
 int nAnzSignale;
 TMIXED MixedArray[_MAX_SIGNALE];
}

Parameter Description
nAnzSignale Number of signal bytes;
SigTyp Defines the signal type. This parameter can have one

of the following values:

Value Explanation
0 RC outputs
2 RC inputs
5 Digital inputs
4 Digital outputs

Return parameters
struct DDESIGNALE
{
 TGSTATUS GStatus;
 int nAnzSignale;
 unsigned char SigArray[_MAX_STATUS_SIGNALE];
};

Parameter Description
GStatus Global status, see Section 9.1, "Status and

Initialization Functions."
SigArray[] Status of requested signal byte.

1070 072 161-102 (97.08) GB

List of Functions 10-43

10.4 Access to User Variables
The ROPS3 server is capable of monitoring as well as modifying the
contents of the user variables of any desired BAPS program. This is pos-
sible regardless of whether the file containing the referred variables is lo-
cated on the PC or in the control unit, or whether a process is active in the
RC or processing has just been concluded.

10.4.1 General Information

10.4.1.1 Prerequisites
In order to enable symbolic access to the variables, the server requires
information from the .SYM file. This file must be available on the PC, and
the server must be informed where it is located (path description).

The .IRD file in which the contents of most variables have been stored,
can be located in the control unit as well as on the PC. Which file the ser-
ver is to access will be specified in the corresponding DDE messages. In
the event that an .IRD file on the PC is to be accessed, this file must be
located on the same path as the .SYM file.

In the event of access to the point variables that are stored in the :PKT
file, the .PKT file will also be required. In this case, too, the user determi-
nes via his DDE message where the file he wishes to access is located.

The DDE server has simultaneous access to the user variables in up to
20 different user files.

Note: As regards its services, the Online DDE Server supports only fi-
lenames up to 8 characters in length.

10.4.1.2 Permitted Variables
The server is basically capable of accessing all user variables, the con-
tents of which are stored in the .IRD or .PKT file, i.e., variables that are
defined in the main program.

User variables that the control unit has not written to the .IRD and/or .PKT
file, but that are only present on the internal IRD stack during runtime,
cannot accessed by the server, and can therefore neither be read not
written to. This type of variables includes, for example, the transfer para-
meters for subprograms, or variables that are defined in the subprograms
themselves.

The server has no access to so-called system variables. These are varia-
bles that are always present in all processes, and that do not have to be
explicitly declared by the programmer.

1070 072 161-102 (97.08) GB

List of Functions10-44

The group of system variables includes the following:

IPOS, @IPOS, @MPOS, GRENZE_MIN, GRENZE_MAX, V, VFEST, T,
TFEST, A, AFEST, V_PTP, VFEST_PTP, VFAKTOR, AFAKTOR, SKA-
LA, RK_SYSTEM, DFAKTOR, R_PTP, and R.

The current values of these variables are not stored in the :IRD file but
are handled separately by the operating system of the control unit.

10.4.1.3 Entering Names of Variables
The server must be given the name of the variable in the same way in
which it was defined in the BAPS program. Upper case and lower case
characters are interpreted in compiler fashion, e.g. with equal value.

Name extensions, such as kinematics names or components of point va-
riables, are separated by a decimal point from the actual variable name.
The use of wildcard characters is not permitted.

Example:
Accessing a point component ("name.Komponente")

'pl.a_1' ; This entry returns the component
; 'a_1' of the point labelled 'pl'

Example:
Accessing a point with kinematics data ('kinematic.name'

'sr800.pl' ; This entry returns the value of
; point 'pl' which belongs to kine-
; matics 'sr800'

Example:
Accessing a point component with kinematics data

('kinematic.name.Komponente')

'sr800.pl.a_1' ; This entry returns the value of
; the component 'a_1' of 'point 'pl'
; which belongs to kinematics
; 'sr800'

When requesting fields, the indexes of the individual field dimensions are
enclosed in square brackets. In the case of multidimensional fields, not all
dimensions must be specified. Ranges of a given dimension are separa-
ted by a hyphen.

It should be noted that a range specification may be specified only once
per request, and this applies only to the last dimension specified.

1070 072 161-102 (97.08) GB

List of Functions 10-45

Example:
Definition of a two-dimensional field in BAPS:
"FELD [1..30] FELD [1..10] GANZ :
INT_ARRAY

Access to a field variable
'int_array[1][1]' ; Returns a total value of

; field named 'int_array'

Access to a complete field dimension
'int_array[1]' ; Returns 10 total values of

; field named 'int_array'
; ('int_array' [1][1] through
; 'int_array' [1][10])

Access to a range of a field dimension
'int_array[1][2-5]' ; Returns 4 total values of

; field named 'int_array'
; ('int_array' [1][2],
; 'int_array'[1][3],
; 'int_array'[1][4] and
; 'int_array' [1][5])

OR

'int_array[1-2]' ; Returns 20 total values of
; field named 'int_array'

Not permitted are the following entries:

'int_array[1-5][2-5]'

OR

'int_array[1-5][2]'

The specification of variables requires similar definitions.

1070 072 161-102 (97.08) GB

List of Functions10-46

10.4.1.4 Security Query (Common ID)
In order to guarantee the correctness of the contents of variables it supp-
lies, the server must receive all information it requires for this purpose
from files that were created during the same compilation session. To
safeguard this prerequisite, a so-called Common ID monitoring function is
used. (The Common ID comprises an identification number that is written
into each file during compilation, with the system time stamp indicating at
which point in time this file was created or last modified.)

In the event that the Common ID of the :IRD, .PKT and .SYM files does
not match, an error message will be returned by the GStatus or Server-
Control (Control_Server) services, and the service terminated.

The Common ID monitoring can also be disabled upon request by the cli-
ent. It is instructive to note, however, that the user must be fully aware of
the consequences. In the worst-case scenario, the disablement of the
function can also cause the destruction of a .PKT or .IRD file.

10.4.2 Reading Variables

This service provided by the server returns the contents of any desired
user variables. It is possible to observe a maximum of 32 variables with a
total of 200 bytes of information at the same time.

Possible errors are signalled by the GStatus or ServerFehler service.

One-time request for variables:

Client Message "Item" Data <=> Server
Initialize XTYP_POKE "item" TINITREADWRITE =>
request DDE_FACK "item" --- <= Acknowledge

Request contents
(random number

XTYP_REQUST "item" --- =>

of requests) TREADVARDATA <= Send contents
of variables

Stop XTYP_ADVDATA "item" TEXITREADWRITE
"EXIT_POKE"

<=

request DDE_FACK "item" --- => Acknowledge

Note: When using INIT_POKE, the files required by the server for an
access to the variable are opened. Because the server needs the
EXIT_POKE instruction to close all associated files and to release the in-
ternal memory capacity it has been using for this function, the user must
ascertain that an initialized request is properly ended with the
EXIT_POKE command.

For each item, a maximum of 200 bytes can be read.

1070 072 161-102 (97.08) GB

List of Functions 10-47

Cyclical request for variables:

Client Message "Item" Data <=> Server
Initialize XTYP_POKE "item" TINITREADWRITE

"INIT_POKE"
=>

request DDE_FACK "item" --- <= Acknowledge
Start cyclical XTYP_ADVSTART "item" --- =>

request TRUE <=
Continue

until
XTYP_ADVDATA "item" TREADVARDATA <= Send contents

of variables
stop DDE_FACK "item" --- =>

Stop reading XTYP_ADVSTOP "item" --- =>

Note: At the point of starting the cyclical query, the files required by the
server for access to the variable are opened. The user is advised to make
certain that a cyclically initializing request is properly terminated with the
XTYP_ADVSTOP instruction. Only in this case will the server be able to
close all files it has opened, and release the internal memory range it has
occupied for this function. Also, the DDE management will then register
the cyclical service as concluded.

In the course of cyclical read accesses, all active items are grouped, and
their contents are simultaneously requested by the RC (or by the PC). In
this manner, a synchronized image of the contents of the desired varia-
bles is obtained. For this reason, a maximum total of 200 bytes per chan-
nel can be cyclically read-accessed.

Items:
VarRead1 .. VarRead32
(The number of items can be limited in the ROPS3SVR.INI file.)

Start Parameters for initialization
typedef enum { INIT_POKE, EXIT_POKE, DATA_POKE } TPOKESTA-
TUS:

struct TINITREADWRITE
{
 TPOKESTATUS PokeStatus
 char szPath [MAX_DIR];
..char szVarName [_MAX_STRING];
 BOOL bCommonID;
 BOOL bPCRC;
};

1070 072 161-102 (97.08) GB

List of Functions10-48

Parameter Description
PokeStatus This datum has 3 states (INIT_POKE, EXIT_POKE,

and DATA_POKE), and is used by the server to
differentiate which type of message is represented by
a particular poke. When initializing, this datum must be
set to "INIT_POKE."

szPath Complete .SYM file pathname and filename (without
extension).

szVarName Name of variable (including possible field indexes)
bCommonID Common ID monitoring

Value Explanation
0 Monitoring is disabled
1 Monitoring is enabled

bPCRC Reads variable from file in RC or on PC

Value Explanation
0 Reads variable from file in RC
1 Reads variable from file on PC

Start Parameters for termination
typedef enum { INIT_POKE, EXIT_POKE, DATA_POKE } TPOKESTA-
TUS:

struct TEXITREADWRITE
{
 TPOKESTATUS PokeStatus
};

Parameter Description
PokeStatus This datum has 3 states (INIT_POKE, EXIT_POKE,

and DATA_POKE), and is used by the server to
differentiate which type of message is represented by
a particular poke. When initializing, this datum must be
set to "INIT_POKE."

Return parameters
struct TBINEA
{
 long 1BinEA;
 long 1Kanal;
}

struct TDEZA
{
 float fdezEA;
 long 1Kanal;

struct TGANZEA
{
 long 1GanzEA
..long 1Kanal;
}

1070 072 161-102 (97.08) GB

List of Functions 10-49

struct TREADVARDATA
{
 TGSTATUS GStatus
 int nGroesse
 union{

float fDez [50];
long 1Ganz [50];
long 1Binaer [50];
char cZeichen [200];
char szText [200];
float fPunkt [50];
float fMKPunkt [50];
float fRKRahmen [50];
TBINEA 1BinEingang [25];
TBINEA 1BinAusgang [25];
TDEZEA fDezEingang [25];
TDEZEA fDezAusgang [25];
TGANZEA 1GanzEingang [25];
TGANZEA 1GanzAusgang [25];
}Var;

};

Parameter Description
bBinEA Status of binary channel
fdezEA Status of DEZ channel
1GanzEA Status of GANZ channel
1Kanal Channel number of inputs and outputs
GStatus Global status (see Section 9.1, "Status and

Initialization Functions")
nGroesse Number of bytes transferred
fDez Contents of a variable of DEZ type
1Ganz Contents of a variable of GANZ type
1Binaer Contents of a variable of BINAER type
cZeichen Contents of a variable of ZEICHEN type
szText Contents of a variable of TEXT type
fPunkt Contents of a variable of PUNKT type
FMKPunkt Contents of a variable of MK_PUNKT type
fRKRahmen Contents of a variable of RK_PUNKT type
1BinEingang Contents & channel number of binary input
1BinAusgang Contents & channel number of binary output
1DezEingang Contents & channel number of DEZ input
1DezAusgang Contents & channel number of DEZ output
1GanzEingang Contents & channel number of GANZ input
1GanzAusgang Contents & channel number of GANZ output

Note: In the case of undefined points, the server will return "ffffffff". With
IPOS and @IPOS, the channel number (long) is included as the last da-
tum in the transfer.

With cyclical requests, the server returns the contents of variables only
once a change has occurred in the variable.

The transmission of the contents of variables can be temporarily halted by
setting a control bit in the Control_Client function.

1070 072 161-102 (97.08) GB

List of Functions10-50

10.4.3 Reading Variables via ASCII Protocol

This service provided by the server returns the contents of any user va-
riables. The communication between client and server is effected by me-
ans of ASCII characters. It is possible to observe a maximum of 32
variables with a total of 200 bytes of information at the same time.

Possible errors are signalled by the GStatus or ServerFehler service.

One-time request for variables:

Client Message "Item" Data <=> Server
Initialize XTYP_POKE "item" szReadVar

"INIT"
=>

request DDE_FACK "item" --- <= Acknowledge
Request contents
(random number

XTYP_REQUST "item" --- =>

of requests) szReadVarData <= Send contents
of variables

Stop
request

XTYP_POKE "item" szReadVar
"EXIT"

<=

DDE_FACK "item" --- => Acknowledge

Note: While initializing, the files required by the server for an access to
the variable are opened. Because the server needs the EXIT instruction
to close all associated files and to release the internal memory capacity it
has been using for this function, the user must ascertain that an initialized
request is properly ended with the EXIT command.
For each item, a maximum of 200 bytes can be read.

Cyclical request for variables:

Client Message "Item" Data <=> Server
Initialize XTYP_POKE "item" szReadVar

"INIT"
=>

request DDE_FACK "item" --- <= Acknowledge
Start cyclical XTYP_ADVSTART "item" --- =>

request TRUE --- <=
Continue

until
XTYP_ADVDATA "item" szReadVarData <= Send contents

of variables
stop DDE_FACK "item" --- =>

Stop request XTYP_ADVSTOP "item" --- =>

Note: At the point of starting the cyclical query, the files required by the
server for access to the variable are opened. The user is advised to make
certain that a cyclically initializing request is properly terminated with the
XTYP_ADVSTOP instruction. Only in this case will the server be able to
close all files it has opened, and release the internal memory range it has
occupied for this function. Also, the DDE management will then register
the cyclical service as concluded.

1070 072 161-102 (97.08) GB

List of Functions 10-51

In the course of cyclical read accesses, all active items are grouped, and
their contents are simultaneously requested by the RC (or by the PC). In
this manner, a synchronized image of the contents of the desired varia-
bles is obtained. For this reason, a maximum total of 200 bytes per chan-
nel can be cyclically read-accessed.

Items:
VarRead1_A .. VarRead32_A
(The number of items can be limited in the ROPS3SVR.INI file.)

Start Parameters for initialization
char szReadVar[_MAX_STRING]; "INIT, szPath,

szVarName[,cCommonId,cPCRC]\0"

The "cCommonId" and "cPCRC" parameters can be omitted, in which
case the default values will apply.

Parameter Description
INIT Keyword for initializing a task.
szPath Complete .SYM file pathname and filename (without

extension).
szVarName Name of variable (including possible field indexes)
bCommonID Common ID monitoring

Value Explanation
0 Monitoring is disabled
1 Monitoring is enabled (default)

cPCRC Reads variable from file in RC or on PC

Value Explanation
0 Reads variable from file in RC (default)
1 Reads variable from file on PC

Start Parameters for termination
char szReadVar[_MAX_STRING]; "EXIT\0"

Parameter Description
EXIT Keyword for terminating a request.

Return parameters
struct TBINEA

char szReadVarData[_MAX_ASCII_ANSWER];
"szWert1[,szWert2,szWert3..]\0"

Parameter Description
szWert1,szWert2.. Contents of variable(s) in ASCII. If there are more than

value, (e.g. with points), the individual values are
separated by commas.

1070 072 161-102 (97.08) GB

List of Functions10-52

Examples: ASCII string structure

Type of variable String structure
DEZ "1.0,-32.66,0,177\0"
GANZ "10,20,-33,1235\0"
BINAER "1,1,1,0,0,0\0"
ZEICHEN "x\0"

Special feature with character fields:
Here, the individual character fields are not
separated by commas!

TEXT "ABCDEfghIjk01\0"
Special features with texts and text fields:
In BAPS, a text can have a maximum length of 80
characters. In the event is shorter than 80
characters, the remaining characters of the text (up
the maximum size) must be filled up with zeroes. If
a text is 80 characters long, the 0 at the end of the
text is omitted. The server always transfers 80
characters for each text, and/or for each field
element of a text field.

PUNKT, MKPUNKT
RKRAHMEN "333.444,-777.44,0.98\0"

Special feature with points:
In the case of undefined points, the server will
return the contents "--.--\0"

EINGANG BINAER,
AUSGANG BINAER "1,1,0,2\0"
EINGANG DEZ,
AUSGANG DEZ "11.22,201,-44.55,402\0"
EINGANG GANZ,
AUSGANG GANZ "11.22,201,-44.55,402\0"

Special feature with channels:
Transfers for channels always aleays include 2
values, with the first value representing the channel
status and/or channel value, and the second being
the channel number.

With cyclical requests, the server returns the contents of variables only
once a change has occurred in the variable.

The transmission of the contents of variables can be temporarily halted by
setting a control bit in the Control_Client function.

1070 072 161-102 (97.08) GB

List of Functions 10-53

10.4.4 Writing Variables
The user can avail himself of these services for the purposes of changing
variables. To ensure the detection of errors that may have occurred as a
result of write-accesses to variables, the current status should be deter-
mined subsequent to executing the command (using GStatus or Server-
Fehler functions).

Because it is possible that both the BAPS process of the control unit and
the server may access the same variable at the same time, the applicati-
on programmer must safely exclude any possible addressing conflict. Ac-
cordingly, the responsibility for precluding unwanted control unit
responses while writing variables with the use of this server function rests
with the application programmer.

As regards validity or value range, the server does not perform any
type of verification of the new values sent by the client, but writes
these values directly into the file indicated to the server.

One-time write-access to variables:

Client Message "Item" Data <=> Server
Initialize XTYP_POKE "item" TINITREADWRITE

"INIT_POKE"
=>

request DDE_FACK "item" --- <= Acknowledge
Write to contents
(random number

XTYP_POKE "item" TWRITEVAR
"DATA_POKE"

=> Send contents
of variables

of requests) DDE_FACK "item" --- <=
Stop XTYP_POKE "item" TEXITREADWRITE

"EXIT_POKE"
<=

request DDE_FACK "item" --- => Acknowledge

Note: When using INIT_POKE, the files required by the server for an
access to the variable are opened. Because the server needs the
EXIT_POKE instruction to close all associated files and to release the in-
ternal memory capacity it has been using for this function, the user must
ascertain that an initialized request is properly ended with the
EXIT_POKE command.
For each item, a maximum of 200 bytes can be written.

Cyclical write-access to variables:

Client Message "Item" Data <=> Server
Initialize XTYP_POKE "item" TINITREADWRITE

"INIT_POKE"
=>

request DDE_FACK "item" --- <= Acknowledge
Start cyclical XTYP_ADVSTART "item" --- =>
write-access TRUE --- <=

Continue writing
(random number

of accesses)

XTYP_POKE "item" TWRITEVAR
"DATA_POKE"

<= Send contents
of variables

DDE_FACK "item" --- => Acknowledge
Stop reading XTYP_ADVSTOP "item" --- =>

1070 072 161-102 (97.08) GB

List of Functions10-54

Note: At the point of starting the cyclical query, the files required by the
server for access to the variable are opened. The user is advised to make
certain that a cyclically initializing request is properly terminated with the
XTYP_ADVSTOP instruction. Only in this case will the server be able to
close all files it has opened, and release the internal memory range it has
occupied for this function. Also, the DDE management will then register
the cyclical service as concluded. For each item, a maximum total of 200
bytes per channel can be written.

Items:
VarWrite1 .. VarWrite32
(The number of items can be limited in the ROPS3SVR.INI file.)

Start Parameters for initialization
typedef enum { INIT_POKE, EXIT_POKE, DATA_POKE } TPOKESTA-
TUS;

struct TINITREADWRITE
{
 TPOKESTATUS PokeStatus
 char szPath [MAX_DIR];
..char szVarName [_MAX_STRING];
 BOOL bCommonID;
 BOOL bPCRC;
};

Parameter Description
PokeStatus This datum has 3 states (INIT_POKE, EXIT_POKE,

and DATA_POKE), and is used by the server to
differentiate which type of message is represented by
a particular poke. When initializing, this datum must be
set to "INIT_POKE."

szPath Complete .SYM file pathname and filename (without
extension).

szVarName Name of variable (including possible field indexes)
bCommonID Common ID monitoring

Value Explanation
0 Monitoring is disabled
1 Monitoring is enabled

bPCRC Reads variable from file in RC or on PC

Value Explanation
0 Reads variable from file in RC
1 Reads variable from file on PC

1070 072 161-102 (97.08) GB

List of Functions 10-55

Start Parameters for termination
typedef enum { INIT_POKE, EXIT_POKE, DATA_POKE } TPOKESTA-
TUS;

struct TEXITREADWRITE
{
 TPOKESTATUS PokeStatus
};

Parameter Description
PokeStatus This datum has 3 states (INIT_POKE, EXIT_POKE,

and DATA_POKE), and is used by the server to
differentiate which type of message is represented by
a particular poke. When initializing, this datum must be
set to "INIT_POKE."

Start Parameters for write-access
typedef enum { INIT_POKE, EXIT_POKE, DATA_POKE } TPOKESTA-
TUS;

struct TWRITEVAR
{
 TPOKESTATUS GStatus
 int nGroesse
 union{

float fDez [50];
long 1Ganz [50];
long 1Binaer [50];
char cZeichen [200];
char szText [200];
float fPunkt [50];
float fMKPunkt [50];
float fRKRahmen [50];
long 1BinEingang [50];
long 1BinAusgang [50];
float fDezEingang [50];
float fDezAusgang [50];
long 1GanzEingang [50];
long 1GanzAusgang [50];
}Var;

};

1070 072 161-102 (97.08) GB

List of Functions10-56

Parameter Description
PokeStatus This datum has 3 states (INIT_POKE, EXIT_POKE,

and DATA_POKE), and is used by the server to
differentiate which type of message is represented by a
particular poke. When initializing, this datum must be
set to "INIT_POKE."

nGroesse Number of bytes to be written
fDez New contents of a variable, DEZ type
1Ganz New contents of a variable, GANZ type
1Binaer New contents of a variable, BINAER type
cZeichen New contents of a variable, ZEICHEN type
szText New contents of a variable, TEXT type
fPunkt New contents of a variable, PUNKT type
FMKPunkt New contents of a variable, MK_PUNKT type
fRKRahmen New contents of a variable, RK_PUNKT type
1BinEingang New contents of a variable, binary input type
1BinAusgang New contents of a variable, binary output type
1DezEingang New contents of a variable, DEZ input type
1DezAusgang New contents of a variable, DEZ output type
1GanzEingang New contents of a variable, GANZ input type
1GanzAusgang New contents of a variable, GANZ output type

Return parameters
none

1070 072 161-102 (97.08) GB

List of Functions 10-57

10.4.5 Writing Variables via ASCII Protocol
For the purpose of changing variables, these services are also available
to the user. The communication between client and server is effected by
means of ASCII characters. To ensure the detection of errors that may
have occurred as a result of write-accesses, the current status should be
determined subsequent to executing the command (using GStatus or
ServerFehler functions).

Because it is possible that both the BAPS process of the control unit and
the server may access the same variable at the same time, the applicati-
on programmer must safely exclude any possible addressing conflict. Ac-
cordingly, the responsibility for precluding unwanted control unit
responses while writing variables with the use of this server function rests
with the application programmer.

As regards validity or value range, the server does not perform any
type of verification of the new values sent by the client, but writes
these values directly into the file indicated to the server.

One-time write-access to variables:

Client Message "Item" Data <=> Server
Initialize XTYP_POKE "item" szWriteVar

"INIT"
=>

request DDE_FACK "item" --- <= Acknowledge
Write to contents
(random number

XTYP_POKE "item" szWriteVar
"DATA"

=> Send contents
of variables

of requests) DDE_FACK "item" --- <= Acknowledge
Stop XTYP_POKE "item" szWriteVar

"EXIT"
<=

request DDE_FACK "item" --- => Acknowledge

Note: During initialization, the files required by the server for an access
to the variable are opened. Because the server needs the EXIT instruc-
tion to close all associated files and to release the internal memory capa-
city it has been using for this function, the user must ascertain that an
initialized request is properly ended with the EXIT command.
For each item, a maximum of 200 bytes can be written.

Cyclical write-access to variables:

Client Message "Item" Data <=> Server
Initialize XTYP_POKE "item" szWriteVar

"INIT"
=>

request DDE_FACK "item" --- <= Acknowledge
Start cyclical XTYP_ADVSTART "item" --- =>

query TRUE --- <=
Continue writing
(random number

of accesses)

XTYP_POKE "item" szWriteVar
"DATA"

<= Send contents
of variables

DDE_FACK "item" --- => Acknowledge
Stop reading XTYP_ADVSTOP "item" --- =>

1070 072 161-102 (97.08) GB

List of Functions10-58

Note: At the point of starting the cyclical query, the files required by the
server for access to the variable are opened. The user is advised to make
certain that a cyclically initializing request is properly terminated with the
XTYP_ADVSTOP instruction. Only in this case will the server be able to
close all files it has opened, and release the internal memory range it has
occupied for this function. Also, the DDE management will then register
the cyclical service as concluded.
For each item, a maximum total of 200 bytes can be written.

Items:
VarWrite1_A .. VarWrite32_A
(The number of items can be limited in the ROPS3SVR.INI file.)

Start Parameters for initialization
char szWriteVar[_MAX_STRING]; "INIT, szPath,

szVarName[,cCommonId,cPCRC]\0"

The "cCommonId" and "cPCRC" parameters can be omitted, in which
case the default values will apply.

Parameter Description
INIT Keyword for initializing a task.
szPath Complete .SYM file pathname and filename (without

extension).
szVarName Name of variable (including possible field indexes)
cCommonID Common ID monitoring (optional)

Value Explanation
0 Monitoring is disabled
1 Monitoring is enabled (default)

cPCRC Reads variable from file in RC or on PC

Value Explanation
0 Reads variable from file in RC (default)
1 Reads variable from file on PC

Start Parameters for termination
char szWriteVar[_MAX_ASCII_ANSWER]; "EXIT\0"

Parameter Description
EXIT Keyword for terminating a request.

Start Parameters for write-access
char szWriteVarData[_MAX_ASCII_ANSWER];

"DATA,szWert1[,szWert2,szWert3..]\0"

1070 072 161-102 (97.08) GB

List of Functions 10-59

Parameter Description
DATA Keyword for sending new values
szWert1,szWert2... New contents of variable(s) in ASCII form. In

the case of more than one value (e.g. with points) the
individual values are separated by commas.

Examples: ASCII string structure when sending new values

Type of variable String structure
DEZ "DATA,1.0,-32.66,0,177\0"
GANZ "DATA,10,20,-33,1235\0"
BINAER "DATA,1,1,1,0,0,0\0"
ZEICHEN "DATA,x\0"

Special feature with character fields:
Here, the individual character fields are not
separated by commas!

TEXT "DATA,ABCDEfghIjk01\0"
Special features with texts and text fields:
In BAPS, a text can have a maximum length of 80
characters. In the event is shorter than 80
characters, the remaining characters of the text (up
the maximum size) must be filled up with zeroes. If
a text is 80 characters long, the 0 at the end of the
text is omitted. The server always transfers 80
characters for each text, and/or for each field
element of a text field.

PUNKT, MKPUNKT
RKRAHMEN "DATA,333.444,-777.44,0.98\0"

Special feature with points:
Defining a point with the use of "--.--" (undefined) is
not possible.

EINGANG BINAER,
AUSGANG BINAER "DATA,1,0\0"
EINGANG DEZ,
AUSGANG DEZ "DATA,11.22,-44.55\0"
EINGANG GANZ,
AUSGANG GANZ "DATA,11.22,-44.55\0"

Return parameters
none

1070 072 161-102 (97.08) GB

List of Functions10-60

10.4.6 Example
A system that is provided with a controller can manufacture a product in
four different versions. The number of items to be manufactured and the
product version is entered via a PC (any user interface), and this data is
transmitted to the On-line Server via DDE. The sequential program in the
controller receives this data from the server and arranges the production
of the required parts.

Note:

Additional application examples for user programming in ACCESS, EX-
CEL and WORD are located on the server diskettes.

The main sequential program:

;;CONTROLLER = RHO3

;;KINEMATICS: (1=SR800)

PROGRAMM PROD

;***
; Variables specified by client

;***

GANZ: AUFTRAG ;Product version
GANZ: ANZAHL ;Required number of products
BINAER: 1 = STARTSIG ;Start signal => Assemble

;specified product(s)

;***
; Variables read by client

;***
BINAER: FPRODUKT ;Unknown version
BINAER: FANZAHL ;Incorrect number
BINAER: 1 = ENDSIG ;End signal => Products

;assembled
GANZ: SUMME1, ;Sum of product version 1
GANZ: SUMME2, ;Sum of product version 2

SUMME3, ;Sum of product version 3
SUMME4, ;Sum of product version 4

ANFANG

SCHLEIFE:

;***
; Wait for start signal from client

;***
WARTE BIS STARTSIG=1

1070 072 161-102 (97.08) GB

List of Functions 10-61

;***
; Initialization and review of specifications from client

;***
FPRODUKT = 0
ENDSIG = 0
WENN ANZAHL < 0 DANN ANFANG ;Check number

FANZAHL = 1
SPRUNG SCHLEIFE
ENDE

SONST FANZAHL = 0

;***
; Branch according to job

;***
FALLS AUFTRAG

GLEICH 1: ;COMPLETED VERSION 1
ANFANG

WDH ANZAHL MAL
PROD1; ;SUB-PROGRAM ASSEMBLED

;PRODUCT 1
SUMME1 = SUMME1 + 1;

WDH_Ende
ENDE

GLEICH 2: ;COMPLETED VERSION 2
ANFANG

WDH ANZAHL MAL
PROD1; ;SUB-PROGRAM ASSEMBLED

;PRODUCT 2
SUMME2 = SUMME2 + 1;

WDH_Ende
ENDE

GLEICH 3: ;COMPLETED VERSION 3
ANFANG

WDH ANZAHL MAL
PROD1; ;SUB-PROGRAM ASSEMBLED

;PRODUCT 3
SUMME3 = SUMME3 + 1;

WDH_Ende
ENDE

GLEICH 4: ;COMPLETED VERSION 4
ANFANG

WDH ANZAHL MAL
PROD1; ;SUB-PROGRAM ASSEMBLED

;PRODUCT 4
SUMME4 = SUMME4 + 1;

WDH_Ende
ENDE

ANSONSTEN PRODUKT = 1;INCORRECT VERSION
FALLS_ENDE

1070 072 161-102 (97.08) GB

List of Functions10-62

;***
; Machine action completed; Message to client
;***

ENDESIG = 1;

SPRUNG SCHLEIFE ;WAITING FOR NEW
;JOB

PROGRAMM_ENDE

;***
; Subprograms for product assembly
;***
;PRODUCTION SEQUENCE VERSION 1
UP PROD1

ANFANG
; .
; .
; .
UP_ENDE

;PRODUCTION SEQUENCE VERSION 2
UP PROD2

ANFANG
; .
; .
; .
UP_ENDE

;PRODUCTION SEQUENCE VERSION 3
UP PROD3

ANFANG
; .
; .
; .
UP_ENDE

;PRODUCTION SEQUENCE VERSION 4
UP PROD4

ANFANG
; .
; .
; .
UP_ENDE

Sequential progress of client/Server operation:

Starting position:

• The server is started and running.
• The .SYM file named Prod.SYM is located on the PC, with path-

name c:\projekt.
• The client has already established connection with the server.
• In the RC, the PROD process has already been selected and

started.

1070 072 161-102 (97.08) GB

List of Functions 10-63

Initialization (starting cyclical serv.) for reading variables:

• Reading error query for wrong execution number.
Server service: VarRead1
Variable in BAPS program: FPRODUKT

Data struct for transfer to server: TINITREADWRITE
Contents of struct elements:
PokeStatus : INIT_POKE
szPath: : "c:\projekt\prod\0"
szVarName : "FPRODUKT\0"
bCommonID : 1
bPCRC : 0

• Reading error query for wrong product number.
Server service: VarRead2
Variable in BAPS program: FANZAHL

Data struct for transfer to server: TINITREADWRITE
Contents of struct elements:
PokeStatus : INIT_POKE
szPath: : "c:\projekt\prod\0"
szVarName : "FANZAHL\0"
bCommonID : 1
bPCRC : 0

• Reading sum of versions already machined.
Server service: VarRead3
Variable in BAPS program: e.g. Summe1

Data struct for transfer to server: TINITREADWRITE
Contents of struct elements:
PokeStatus : INIT_POKE
szPath: : "c:\projekt\prod\0"
szVarName : "SUMME1\0"
bCommonID : 1
bPCRC : 0

• Reading output signal indicating whether the complete job has
been concluded.
Server service: VarRead4
Variable in BAPS program: e.g. ENDESIG

Data struct for transfer to server: TReadVar
Contents of struct elements:
PokeStatus : INIT_POKE
szPath: : "c:\projekt\prod\0"
szVarName : "ENDSIG\0"
bCommonID : 1
bPCRC : 0

All cyclical services must be started via XTYP_ADVSTART.

1070 072 161-102 (97.08) GB

List of Functions10-64

1070 072 161-102 (97.08) GB

List of Functions 11-1

11 Index

.

.BIN Files 9-2

.P2X Files 9-2
A
ASCII Protocol services, listed 8-1
Automatic initialization 10-12
B
Bestimmungsgemäßer Gebrauch 1-1
C
Client 2-2
Cold link 2-3
Common ID, monitoring function 10-46
Conflict, data access 10-57
Connect, command 7-1
Control errors & warnings 10-8
Council Directive relating to electrical equipment for

limited voltages 1-1
Council Directive relating to electromagnetic

compatibility 1-1
D
DDE (Dynamic Data Exchange), defined 2-2
DDE programming literature 3-1
DDE Server, language versions 4-1
DDEML (Dynamic Data Exchange Management

Library) 2-2
Dynamic connection 2-4
Dynamic Data Exchange (DDE) 2-2
E
earthing wrist strap 1-6
EEM 1-6
Electrostatically endangered modules 1-6
Emergency-OFF-devices 1-5
ERROR.TXT file 10-8
ERROR.TXT File, syntax 10-8
ERRTIMEOUT value 10-13
ESD protection 1-6
ESD work stations 1-6
F
File transfer functions

Delete 10-25
Directory 10-22
Download 10-14
Rename 10-24
Upload 10-18

G
Global Status 10-1
GStatus command 8-2
GUI (graphical user interface) 2-1
H
HeartBeat, monitoring function 10-13

Hot link 2-4
I
InitUART, command 7-1
Interface parameters 10-11
Interface, closing 10-12
Interface, initializing 10-11
L
Language versions, DDE Server 4-1
License application 5-1
M
measuring or testing procedures 1-5
Microsoft Windows 3.1 2-1
O
One-time data exchange 2-3
Online function

ASCII Axis Data 10-30
Online functions

Axis positions 10-27
Control Reset 10-39
Kinematics information 10-26
Process List 10-36
Process Selection 10-33
Process Status 10-37
Process Stop 10-35
SC System 10-32
Set RCA 10-41
Signal Status 10-42
Tool 10-31

On-line functions, defined 2-1
Q
Qualifiziertes Personal 1-2
R
Refresh rate, cyclical services 6-2
S
Server 2-2
Server services

ASCII protocol, listed 8-1
Cyclical services, listed 8-1
File management functions, listed 8-1
Non-cyclical services, listed 8-1

Sicherheitshinweise 1-4
Software dongle 5-1
Software key 5-1
spare parts 1-5
System variables, listed 10-44
W
Windows 95 2-1
Windows for Workgroups 3.1.1 2-1
Windows NT 2-1

1070 072 161-102 (97.08) GB • HB SP • AT/PLS • Printed in Germany

